W.D. Lawson, S. Nielsen, E. H. Putley, A.S. Young, Preparation and properties of HgTe and mixed crystals of HgTe-CdTe, J. Phys. Chem. Sol., 9, 325 (1959); https://doi.org/10.1016/0022-3697(59)90110-6.
C.L. Tan, H. Mohseni, Emerging technologies for high performance infrared detectors, Nanophotonics, 7, 169 (2018); https://doi.org/10.1515/nanoph-2017-0061.
A. Rogalski, Infrared and Terahertz Detectors (Third Edition, CRC Press, 2019); https://doi.org/10.1201/b21951.
F. Sizov, Detectors and Sources for THz and IR (Materials Research Foundations, LLC Forum, Millesville, USA, 2020).
D. Lee, P. Dreiske, J. Ellsworth, R. Cottier, et al, Law 19: The ultimate photodiode performance metric, Proc. SPIE, 11407, 114070X-1 (2020); https://doi.org/10.1117/12.2564902.
M.A. Quijada and R. Henry, Temperature evolution of exciton absorptions in Cd1-xZnxTe materials, Proc. SPIE, 6692, 669206 (2007); https://doi.org/10.1117/12.735604.
E. Finkman and S. E. Schacham, The exponential optical absorption band tail of Hg1−xCdxTe, J. Appl. Phys., 56, 2896 (1984); https://doi.org/10.1063/1.333828.
O.G. Lorimor, W.G. Spitzer, Infrared Refractive Index and Absorption of InAs and CdTe, J. Appl. Phys., 36, 1841 (1965); https://doi.org/10.1063/1.171436.
F. Sizov, M. Vuichyk, K. Svezhentsova, Z. Tsybrii, S. Stariy, M. Smolii, CdTe thin films as protective surface passivation to HgCdTe layers for the IR and THz detectors, Mater. Sci. Semicond. Process, 124, 105577 (2021); https://doi.org/10.1016/j.mssp.2020.105577.
J. Chu, S. Xu, and D. Tang, Energy gap versus alloy composition and temperature in Hg1-xCdxTe, Appl. Phys. Lett., 43, 1064 (1983); http://dx.doi.org/10.1063/1.94237.
J. Chen, Y. Lin, L. Li, et al, On the structural evolutionary behavior of the CdTe/HgCdTe interface during the annealing process, J. Mater. Research Technol., 28, 3175 (2024); https://doi.org/10.1016/j.jmrt.2023.12.185.
O. Stenzel, The Physics of Thin Film Optical Spectra (Ch. 7 “Thick slabs and Thin Films”, p. 101 – 124, Springer, 2016).
S.H. Wemple and J.A. Seman, Optical transmission through multilayered structures, Appl. Opt., 12, 2947 (1973).
H.-J. Hoffmann, Optical Glasses in K. H. J. Buschow, R. W. Cahn, M. C. Flemmings, B. Ilschner, E. J. Kramer, S. Mahajan (eds.-in-chief), The Encyclopedia of Materials: Science and Technology (EMSAT), ISBN 0-08-0431526 (Elsevier Science, Cambridge, 2001).
C. Ndebeka-Bandou, F. Carosella, R. Ferreira, A. Wacker and G. Bastard, Free carrier absorption and inter-subband transitions in imperfect heterostructures, Semicon. Scie. Technol., 29, 023001 (2014); https://doi.org/10.1088/0268-1242/29/2/023001.
R.A. Smith, Semiconductors (New York: Cambridge, 1961).
J.R. Lowney, D.G. Seiler, C.L. Littler, and I.T. Yoon, Intrinsic Carrier Concentration of Narrow-Gap Mercury Cadmium Telluride, J. Appl. Phys., 71, 1253 (1992); https://doi.org/10.1063/1.351371.
P.J. Sellin, A.W. Davies, A. Lohstroh, M.E. Özsan, and J. Parkin, Drift mobility and mobility-lifetime products in CdTe:Cl grown by the travelling heater method, IEEE Trans. Nucl. Sci., 52, 3074 (2005); https://doi.org/10.1109/TNS.2005.855641.
K. Suzuki; S. Seto; T. Sawada; K. Imai, Carrier transport properties of HPB CdZnTe and THM CdTe:Cl, IEEE Trans. Nucl. Sci., 49, 1287 (2002); https://doi.org/10.1109/TNS.2002.1039653.
Y. Gui, B. Li, G. Zheng, Y. Chang, et al, Evaluation of densities and mobilities for heavy and light holes in p-type Hg1-xCdxTe molecular beam epitaxy films from magnetic-field-dependent Hall data, J. Appl. Phys., 84, 4327 (1998); http://dx.doi.org/10.1063/1.368652.
Comments (0)