M.A. Al Faruque, M. Syduzzaman, J. Sarkar, K. Bilisik, M. Naebe, A review on the production methods and applications of graphene-based materials, Nanomaterials, 11(9), 2414 (2021); https://doi.org/10.3390/nano11092414.
R. Mas-Balleste, C. Gomez-Navarro, J. Gomez-Herrero, F. Zamora, 2D materials: To graphene and beyond, Nanoscale, 3, 20 (2011); https://doi.org/10.1039/C0NR00323A.
S.E. Taher, J.M. Ashraf, K. Liao, R.K. Abu Al-Rub, Mechanical properties of graphene-based gyroidal sheet/shell architected lattices, Graphene and 2D Mater., 8, 161 (2023); https://doi.org/10.1007/s41127-023-00066-2.
C.Y. Sung, IBM Graphene Nanoelectronics Technologies (IBM T.J. Watson Research Center, Science & Technology Strategy Department, 2015); [Online]. Available: https://www.nist.gov/system/files/documents/pml/div683/conference/Sung.pdf.
D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found, Nature, 453, 80 (2008); https://doi.org/10.1038/nature06932.
Samsung wykorzystuje grafen do ladowania baterii, Nanonet, Aug. 13, 2020; [Online]. Available: https://nanonet.pl/samsung-wykorzystuje-grafen-do-ladowania-baterii/.
J. Tsai, J. Tsai, Samsung, LG pushing investments in graphene for semiconductors and home appliances, DIGITIMES Asia, Jul. 24, 2023; [Online]. Available: https://www.digitimes.com/news/a20230724PD207/automotive-ic-graphene-lg-samsung.html.
A. Frick, Bosch breakthrough in graphene sensor technology, Graphene Flagship, Chalmers University of Technology (2015); [Online]. Available: https://graphene-flagship.eu/materials/news/bosch-breakthrough-in-graphene-sensor-technology/.
Paragraf - Graphene-based Electronics; [Online]. Available: https://www.paragraf.com/.
Graphenea - Graphene Production and Applications; [Online]. Available: https://www.graphenea.com/.
General Graphene Corporation; [Online]. Available: https://generalgraphenecorp.com/.
T. Schmaltz, L. Wormer, U. Schmoch, H. Doscher, Graphene Roadmap Briefs (No. 3): meta-market analysis 2023, 2D Materials, 11(2), 022002 (2024); https://doi.org/10.1088/2053-1583/ad1e78.
K. Sowery, Applied Nanolayers’ graphene is approaching sun synchronous orbit, Electronic Specifier, Apr. 7, 2022; [Online]. Available: https://www.electronicspecifier.com/industries/industrial/applied-nanolayers-graphene-is-approaching-sun-synchronous-orbit.
R. Biliak, Methods of obtaining graphene, Computational Problems of Electrical Engineering, 13(1), 1 (2023); https://doi.org/10.23939/jcpee2023.01.001.
N. Shah, V. Iyer, Z. Zhang, Z. Gao, J. Park, V. Yelleswarapu, F. Aflatouni, A.T.C. Johnson, D. Issadore, Highly stable integration of graphene Hall sensors on a microfluidic platform for magnetic sensing in whole blood, Microsystems & Nanoengineering, 9, article no. 71 (2023); https://doi.org/10.1038/s41378-023-00460-7.
I. Bolshakova, M. Strikha, Ya. Kost, F. Shurygin, Dependence of maximal sensitivity of the magnetic field Hall sensors based on graphene on temperature, Sensor Electronics and Microsystem Technologies, 18(3), 29 (2021); https://doi.org/10.18524/1815-7459.2021.3.241056.
Z. Wang, M. Shaygan, M. Otto, D. Schall, D. Neumaier, Flexible Hall sensors based on graphene, Nanoscale, 8(14), 7683 (2016); https://doi.org/10.1039/c5nr08729e.
B. Uzlu, Z. Wang, S. Lukas, M. Otto, M.C. Lemme, D. Neumaier, Gate-tunable graphene-based Hall sensors on flexible substrates with increased sensitivity, Scientific Reports, 9, 18059 (2019); https://doi.org/10.1038/s41598-019-54375-6.
Z. Wang, L. Banszerus, M. Otto, K. Watanabe, T. Taniguchi, C. Stampfer, D. Neumaier, Encapsulated graphene-based Hall sensors on foil with increased sensitivity, Physica status solidi (b), published (Jun. 6, 2016); https://doi.org/10.1002/pssb.201600224.
D. Izci, C. Dale, N. Keegan, J. Hedley, The construction of a graphene Hall effect magnetometer, IEEE Sensors Journal, 18(23), 9534 (2018); https://doi.org/10.1109/JSEN.2018.2872604.
H. Xu, L. Huang, Z. Zhang, B. Chen, H. Zhong, Flicker noise and magnetic resolution of graphene Hall sensors at low frequency, Applied Physics Letters, 103(11), 112405 (2013); https://doi.org/10.1063/1.4821270.
T. Ciuk, R. Kozlowski, A. Romanowska, A. Zagojski, K. Pietak-Jurczak, B. Stanczyk, K. Przyborowska, D. Czolak, P. Kaminski, Defect-engineered graphene-on-silicon-carbide platform for magnetic field sensing at greatly elevated temperatures, Carbon Trends, 13, 100303 (2023); https://doi.org/10.1016/j.cartre.2023.100303.
T. Ciuk, O. Petruk, A. Kowalik, I. Jozwik, A. Rychter, J. Szmidt, W. Strupinski, Low-noise epitaxial graphene on SiC Hall effect element for commercial applications, Applied Physics Letters, 108(22), 223504 (2016); https://doi.org/10.1063/1.4953258.
T. Dai, H. Xu, S. Chen, Z. Zhang, High performance Hall sensors built on chemical vapor deposition-grown bilayer graphene, ACS Omega, 7(29), 25644 (2022); https://doi.org/10.1021/acsomega.2c02864.
I. Bolshakova, D. Dyuzhkov, Ya. Kost, M. Radishevskiy, F. Shurigin, A. Vasyliev, 7th International Conference on Nanomaterials: Application & Properties (NAP), (Sumy State University, Sumy, 2017) pp 1-4; https://doi.org/10.1109/NAP.2017.8190226.
S. El-Ahmar, M.J. Szary, T. Ciuk, R. Prokopowicz, A. Dobrowolski, J. Jagiello, M. Ziemba, Graphene on SiC as a promising platform for magnetic field detection under neutron irradiation, Applied Surface Science, 590, 152992 (2022); https://doi.org/10.1016/j.apsusc.2022.152992.
L. Fan, J. Bi, K. Xi, X. Yang, Y. Xu, L. Ji, Impact of γ-ray irradiation on graphene-based Hall sensors, IEEE Sensors Journal, 21(14), 16100 (2021); https://doi.org/10.1109/JSEN.2021.3075691.
A. Tyagi, L. Martini, Z.M. Gebeyehu, V. Miseikis, C. Coletti, Highly sensitive Hall sensors based on chemical vapor deposition graphene, ACS Applied Nano Materials, 7(16), 18329 (2023); https://doi.org/10.1021/acsanm.3c03920.
A. Dankert, B. Karpiak, S.P. Dash, Hall sensors batch-fabricated on all-CVD h-BN/graphene/h-BN heterostructures, Scientific Reports, 7, article no. 15231 (2017); https://doi.org/10.1038/s41598-017-12277-8.
T. Shen, J.J. Gu, M. Xu, Y.Q. Wu, M.L. Bolen, M.A. Capano, L.W. Engel, P.D. Ye, Observation of quantum-Hall effect in gated epitaxial graphene grown on SiC (0001), Applied Physics Letters, 95(17), 172105 (2009); https://doi.org/10.1063/1.3254329.
T. Ciuk, A. Kozlowski, P.P. Michalowski, W. Kaszub, M. Kozubal, Z. Rekuc, J. Podgorski, B. Stanczyk, K. Przyborowska, I. Jozwik, A. Kowalik, P. Kaminski, Thermally activated double-carrier transport in epitaxial graphene on vanadium-compensated 6H-SiC as revealed by Hall effect measurements, Carbon, 139, 776 (2018); https://doi.org/10.1016/j.carbon.2018.07.049.
A. Kaidarova, W. Liu, L. Swanepoel, A. Almansouri, N.R. Geraldi, C.M. Duarte, J. Kosel, Flexible Hall sensor made of laser-scribed graphene, npj Flexible Electronics, 5, 2 (2021); https://doi.org/10.1038/s41528-021-00096-7.
B.T. Schaefer, L. Wang, A. Jarjour, K. Watanabe, T. Taniguchi, P.L. McEuen, K.C. Nowack, Magnetic field detection limits for ultraclean graphene Hall sensors, Nature Communications, 11, article no. 4163 (2020); https://doi.org/10.1038/s41467-020-17922-8.
J. Dauber, A.A. Sagade, M. Oellers, K. Watanabe, T. Taniguchi, D. Neumaier, C. Stampfer, Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride, Applied Physics Letters, 106, 193501 (2015); https://doi.org/10.48550/arXiv.1504.01625.
T.M. Radadiya, The graphene sensor technology, International Journal of Science and Research (IJSR), 4(4), 1–5 (2015).
S. Goniszewski, M. Adabi, O. Shaforost, S.M. Hanham, L. Hao, N. Klein, Correlation of p-doping in CVD graphene with substrate surface charges, Scientific Reports, 6, article no. 22858 (2016); https://doi.org/10.1038/srep22858.
J.P. Mensing, T. Lomas, A. Tuantranont, 2D and 3D printing for graphene-based supercapacitors and batteries: A review, Sustainable Materials and Technologies, 25, e00190 (2020); https://doi.org/10.1016/j.susmat.2020.e00190.
H. Xu, L. Huang, Z. Zhang, B. Chen, H. Zhong, L.-M. Peng, Flicker noise and magnetic resolution of graphene Hall sensors at low frequency, Applied Physics Letters, 103(11), 112405 (2013); https://doi.org/10.1063/1.4821270.
L. Wang, I. Meric, P.Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L.M. Campos, D.A. Muller, J. Guo, P. Kim, J. Hone, K.L. Shepard, C.R. Dean, One-dimensional electrical contact to a two-dimensional material, Science, 342(6158), 614 (2013); https://doi.org/10.1126/science.1244358.
F. Xia, V. Perebeinos, Y.-M. Lin, Y. Wu, P. Avouris, The origins and limits of metal–graphene junction resistance, Nature Nanotechnology, 6, 179 (2011); https://doi.org/10.1038/nnano.2011.6.
S. Russo, M.F. Craciun, M. Yamamoto, A.F. Morpurgo, S. Tarucha, Contact resistance in graphene-based devices, Physica E: Low-dimensional Systems and Nanostructures, 42(4), 677 (2010); https://doi.org/10.1016/j.physe.2009.11.080.
A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Reviews of Modern Physics, 81(1), 109 (2009); https://doi.org/10.1103/RevModPhys.81.109.
W. Liu, J. Wei, X. Sun, H. Yu, A study on graphene—metal contact, Crystals, 3(1), 257 (2013); https://doi.org/10.3390/cryst3010257.
M. Politou, I. Asselberghs, I. Radu, T. Conard, O. Richard, C.S. Lee, K. Martens, S. Sayan, C. Huyghebaert, Z. Tokei, S. De Gendt, M. Heyns, Transition metal contacts to graphene, Applied Physics Letters, 107(15), 153104 (2015); https://doi.org/10.1063/1.4933192.
A. Gahoi, S. Wagner, A. Bablich, S. Kataria, V. Passi, M.C. Lemme, Contact resistance study of various metal electrodes with CVD graphene, Solid-State Electronics, 125, 234 (2016); https://doi.org/10.1016/j.sse.2016.07.008.
T. Cusati, G. Fiori, A. Gahoi, V. Passi, M.C. Lemme, A. Fortunelli, G. Iannaccone, Electrical properties of graphene-metal contacts, Scientific Reports, 7(1), article no. 5109 (2017); https://doi.org/10.1038/s41598-017-05069-7.
F. Giubileo, A. Di Bartolomeo, The role of contact resistance in graphene field-effect devices, Progress in Surface Science, 92(3), 143 (2017); https://doi.org/10.48550/arXiv.1705.04025.
H. Xu, Z. Zhang, R. Shi, H. Liu, Z. Wang, S. Wang, L.-M. Peng, Batch-fabricated high-performance graphene Hall elements, Scientific Reports, 3, article no. 1207 (2013); https://doi.org/10.1038/srep01207.
R.S. Popovic, Hall Effect Devices, 2nd ed. (CRC Press, Boca Raton, 2003); https://doi.org/10.1201/NOE0750308557.
D. Collomb, P. Li, S. Bending, Frontiers of graphene-based Hall-effect sensors, Journal of Physics: Condensed Matter, 33(24), 243002 (2021); https://doi.org/10.1088/1361-648X/abf7e2.
Z.B. Cavdar, C. Yanik, E.E. Yildirim, L. Trabzon, T.C. Karalar, Separated terminal 2D Hall sensors with improved sensitivity, Sensors and Actuators A: Physical, 324, 112550 (2021); https://doi.org/10.1016/j.sna.2021.112550.
R.H.J. Vervuurt, W.M.M. Kessels, A.A. Bol, Atomic layer deposition for graphene device integration, Advanced Materials Interfaces, 4(18), article no. 1700232 (2017); https://doi.org/10.1002/admi.201700232.
M. Crescentini, S.F. Syeda, G.P. Gibiino, Hall-effect current sensors: Principles of operation and implementation techniques, IEEE Sensors Journal, 22(11), 10137 (2022); https://doi.org/10.1109/JSEN.2022.3172153.
V. Mosser, N. Matringe, Y. Haddab, A spinning current circuit for Hall measurements down to the nanotesla range, IEEE Transactions on Instrumentation and Measurement, 66(4), 637 (2017); https://doi.org/10.1109/TIM.2017.2653224.
Graphene Supermarket, Graphene Laboratories Inc.; [Online]. Available: https://www.graphene-supermarket.com.
Comments (0)