Crystalline Size and Intrinsic Strain of Hexagonal CdTe Thin Films

N. Romeo, A. Bosio, R. Tedeschi, A. Romeo, V. Canevari, A highly efficient and stable CdTe/CdS thin film solar cell, Solar Energy Materials and Solar Cells, 58(2), 209 (1999); https://doi.org/10.1016/S0927-0248(98)00204-9.

M.V. Kirichenko, R.V. Zaitsev, A.I. Dobrozhan, G.S. Khrypunov, M.M. Kharchenko, 2017 IEEE 1st Ukraine Conference on Electrical and Computer Engineering, UKRCON (Kyiv, 2017), p. 355 (2017); https://doi.org/10.1109/UKRCON.2017.8100509.

G.S. Khrypunov, G.I. Kopach, A.I. Dobrozhan, R.P. Mygushchenko, O.V. Kropachek, V.M. Lyubov, Structure and optical properties of CdS polycrystalline layers for solar cells based on CdS/CdTe, Functional Materials, 26 (1), 23 (2019); https://doi.org/10.15407/FM26.01.23.

A. Dobrozhan, A. Meriuts, G. Kopach, R. Mygushchenko, Structure and Optical Properties of Thermal CdTe Thin Films after Electron Beam Irradiation 2021 IEEE 2nd KhPI Week on Advanced Technology, KhPI Week (Kharkiv, 2021), 701 (2021); https://doi.org/10.1109/KhPIWeek53812.2021.9570022.

A. Dobdozhan, A. Meriuts, A. Khrypunova, 2023 IEEE 4th KhPI Week on Advanced Technology, KhPI Week (Kharkiv, 2023) https://doi.org/10.1109/KhPIWeek61412.2023.10312950.

P.C. Dey, R. Das, Impact of silver doping on the crystalline size and intrinsic strain of MPA-capped CdTe nanocrystals: a study by williamson–Hall method and size–strain plot method, J. of Materi Eng and Perform 30, 652 (2021); https://doi.org/10.1007/s11665-020-05358-9.

P.C. Dey, R. Das, Effect of silver doping on the elastic properties of CdS nanoparticles, J. Indian J. Phys., 92, 1099 (2018); https://doi.org/10.1007/s12648-018-1214-4.

Y. Ren, X. Gao, C. Zhang, X. Liu, S. Sun, The Electronic and Elastic Properties of Si Atom Doping in TiN: A First-Principles Calculation, Coating, 8(1) 4(2018); https://doi.org/10.3390/coatings8010004.

G.I. Kopach, R.P. Mygushchenko, G.S. Khrypunov, A.I. Dobrozhan, M.M. Harchenko, Structure and Optical Properties CdS and CdTe Films on Flexible Substrate Obtained by DC Magnetron Sputtering for Solar Cells, Journal of Nano- and Electronic Physics, 9(5), 05035 (2017); https://doi.org/10.21272/jnep.9(5).05035.

A.I. Dobrozhan, G.I. Kopach, R.P. Mygushchenko, G.S. Khrypunov, M.M. Harchenko, O.V. Polezhaeva, 2018 IEEE 8th International Conference on Nanomaterials: Applications and Properties, (Odesa, 2018) art. no. 8915293 (2018); https://doi.org/10.1109/NAP.2018.8915293.

D. Kudii, A. Meriuts, A. Khrypunova, T. Shelest, V. Varvianska, R. Zaitsev, 2020 IEEE 4th International Conference on Intelligent Energy and Power Systems, (Istanbul, 2020) art. no. 9263233, 135 (2020): https://doi.org/10.1109/IEPS51250.2020.9263233.

R.V. Zaitsev, M.V. Kirichenko, G.S. Khrypunov, S.A. Radoguz, M.G. Khrypunov, D.S. Prokopenko, L.V. Zaitseva, Operating Temperature Effect on the Thin Film Solar Cell Efficiency, Journal of Nano- and Electronic Physics, 11(4), 04029 (2019); https://doi.org/10.21272/jnep.11(4).04029.

B.P. Pandey, Structural and Elastic Properties Calculation of CdX (X= S, Se, Te) Semiconductors from First-Principles, International Journal of Applied Nanotechnology, 3(2), 8 (2017); https://doi.org/10.37628/ijan.v3i2.303.

S. Mahadevan, S.P. Behera, G. Gnanaprakash, T. Jayakumar, J. Philip, B.P.C. Rao, Size distribution of magnetic iron oxide nanoparticles using Warren–Averbach XRD analysis, J. Phys. Chem. Solids, 73, 867 (2012); https://doi.org/10.1016/j.jpcs.2012.02.017.

S. Sarkar, R. Das, Determination of structural elements of synthesized silver nano-hexagon from X-ray diffraction analysis, Indian J. Pure Appl. Phys., 56(10), 765 (2018); https://doi.org/10.56042/ijpap.v56i10.19809.

R. Das, S.S. Nath, R. Bhattacharjee, Preparation of linoleic acid capped gold nanoparticles and their spectra. Physica E Low Dimens. Syst. Nanostruct., 43(1), 224 (2010); https://doi.org/10.1016/j.physe.2010.07.008.

N. Kurniawati, D.A.P. Wardani, B. Hariyanto, N.P. Har, N. Darmawan, Irzaman. Analysis of Lattice Constants and Error for The Hexagonal Crystal Structure of Silicon Dioxide Using The Cramer-Cohen Method, J. Phys.: Conf. Ser. 2019 012071 (2021); https://doi.org/10.1088/1742-6596/2019/1/012071.

R. Jacob, J. Isac, X-ray diffraction line profile analysis of Ba0.6Sr0.4FexTi(1-x) O3-δ, (x=0.4), Int. J. Chem. Stud., 2(5), 12(2015).

P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis, J. Theor. Appl. Phys., 8, 123 (2014); https://doi.org/10.1007/s40094-014-0141-9.

M.S.S. Saravanan, K. Sivaprasad, P. Susila, S.P. Kumaresh, Physica B, 406(2), 165 (2011); https://doi.org/10.1016/j.physb.2010.10.023.

R. Das, S. Sarkar, X-ray diffraction analysis of synthesized silver nanohexagon for the study of their mechanical properties, Mater. Chem. Phys., 167, 97 (2015); https://doi.org/10.1016/j.matchemphys.2015.10.015.

J.-M. Zhang, Y. Zhang, K.-W. Xu, V. Ji, Anisotropic elasticity in hexagonal crystals, Thin Solid Films 515, 7020 (2007); https://doi.org/10.1016/j.tsf.2007.01.045.

S. Saib, S. Benyettou, N. Bouarissa, S. Ferahtia, First principles study of structural, elastic and piezoelectric properties of CdSexTe1−x ternary alloys in the wurtzite structure, Phys. Scr., 90, 035702 (2015); https://doi.org/10.1088/0031-8949/90/3/035702.

P.V. Raleaooa, A. Roodt, G.G. Mhlongo, D.E. Motaung, O.M. Ntwaeaborwa, Analysis of the structure, particle morphology and photoluminescent properties of ZnS:Mn2+ nanoparticulate phosphors, Optik, 153, 31 (2018); https://doi.org/10.1016/j.ijleo.2017.09.120.

A.K. Zak, W.H. Abd Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods, Solid State Sci., 13, 251 (2011); https://doi.org/10.1016/j.solidstatesciences.2010.11.024.

D. Nath, F. Singh, R. Das, Calculating the Crystallite Size of Microsorum scolopendria AgCl Nanoparticles and Their Biological Activities, Mater. Chem. Phys., 239, 122021 (2020); https://doi.org/10.1016/j.matchemphys.2019.122021.

Comments (0)

No login
gif