Patient-derived organoids as a model to study tubo-ovarian carcinoma: a pathologist’s perspective

Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229–63.

PubMed  Google Scholar 

Lheureux S, Gourley C, Vergote I, Oza AM. Epithelial ovarian cancer. Lancet. 2019;393:1240–53.

PubMed  Google Scholar 

Cheung AN, Ellenson LH, Gilks CB, Kim K-R, Kong CS, Lax SF, et al. Tumours of the ovary. editor. WHO classification of tumours - Female genital tumours. 5th ed. Lyon: International Agency for Research on Cancer; 2020. WHO Classification of Tumours Editorial Board.

Google Scholar 

Prat J, D’Angelo E, Espinosa I. Ovarian carcinomas: at least five different diseases with distinct histological features and molecular. Hum Pathol. 2018;80:11–27.

CAS  PubMed  Google Scholar 

Kurman RJ, Shih IM. The dualistic model of ovarian carcinogenesis revisited, revised, and expanded. Am J Pathol. 2016;186(4):733–47.

PubMed  PubMed Central  Google Scholar 

Colombo N, Sessa C, Bois A, Ledermann J, Mccluggage WG, Mcneish I, et al. ESMO – ESGO consensus conference recommendations on ovarian cancer: pathology and molecular biology, early and advanced stages, borderline tumours and recurrent disease. Int J Gynecol Cancer. 2019;30(5):672–705.

CAS  Google Scholar 

Malpica A, Deavers MT, Lu K, Bodurka DC, Atkinson EN, Gershenson DM, et al. Grading ovarian serous carcinoma using a Two-Tier system. Am J Surg Pathol. 2004;28(4):496–504.

PubMed  Google Scholar 

Kuhn E, Kurman RJ, Vang R, Sehdev AS, Han G, Soslow R, et al. TP53 mutations in serous tubal intraepithelial carcinoma and concurrent pelvic high-grade serous carcinoma-evidence supporting the clonal relationship of the two lesions. J Pathol. 2012;226(3):421–6.

CAS  PubMed  Google Scholar 

Ducie J, Dao F, Considine M, Olvera N, Shaw PA, Kurman RJ, et al. Molecular analysis of high-grade serous ovarian carcinoma with and without associated serous tubal intra-epithelial carcinoma. Nat Commun. 2017;8(1):1–9.

CAS  Google Scholar 

Crum CP, Drapkin R, Miron A, Ince TA, Muto M, Kindelberger DW, et al. The distal fallopian tube: a new model for pelvic serous carcinogenesis. Curr Opin Obstet Gynecol. 2007;19(1):3–9.

PubMed  Google Scholar 

Kurman RJ, Shih IM. Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer - Shifting the paradigm. Hum Pathol. 2011;42(7):918–31.

CAS  PubMed  PubMed Central  Google Scholar 

Kurman RJ. Origin and molecular pathogenesis of ovarian high-grade serous carcinoma. Ann Oncol. 2013;24(Suppl):16–21.

Google Scholar 

Narod S. Can advanced-stage ovarian cancer be cured? Nat Rev Clin Oncol. 2016;13(4):255–61.

CAS  PubMed  Google Scholar 

Li J, Abushahin N, Pang S, Xiang L, Chambers SK, Fadare O, et al. Tubal origin of ovarian low-grade serous carcinoma. Mod Pathol. 2011;24(11):1488–99.

CAS  PubMed  Google Scholar 

Ahn G, Folkins AK, McKenney JK, Longacre TA. Low-grade serous carcinoma of the ovary: clinicopathologic analysis of 52 invasive cases and identification of a possible noninvasive intermediate lesion. Am J Surg Pathol. 2016;40(9):1165–76.

PubMed  Google Scholar 

Grisham RN, Slomovitz BM, Andrews N, Banerjee S, Brown J, Carey MS, et al. Low-grade serous ovarian cancer: expert consensus report on the state of the science. Int J Gynecol Cancer. 2023;33(9):1331–44.

PubMed  PubMed Central  Google Scholar 

Miller RE, Leary A, Scott CL, Serra V, Lord CJ, Bowtell D, et al. ESMO recommendations on predictive biomarker testing for homologous recombination deficiency and PARP inhibitor benefit in ovarian cancer. Ann Oncol. 2020;31(12):1606–22.

CAS  PubMed  Google Scholar 

Funingana IG, Reinius MAV, Petrillo A, Ang JE, Brenton JD. Can integrative biomarker approaches improve prediction of platinum and PARP inhibitor response in ovarian cancer? Semin Cancer Biol. 2021;77:67–82.

CAS  PubMed  Google Scholar 

Clevers H. Modeling development and disease with organoids. Cell. 2016;165(7):1586–97.

CAS  PubMed  Google Scholar 

Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer. 2018;18(7):407–18.

CAS  PubMed  Google Scholar 

Tong L, Cui W, Zhang B, Fonseca P, Zhao Q, Zhang P, et al. Patient-derived organoids in precision cancer medicine. Med. 2024;5(11):1351–77.

CAS  PubMed  Google Scholar 

Thorel L, Perréard M, Florent R, Divoux J, Coffy S, Vincent A, et al. Patient-derived tumor organoids: a new avenue for preclinical research and precision medicine in oncology. Exp Mol Med. 2024;56(7):1531–51.

CAS  PubMed  PubMed Central  Google Scholar 

Hill SJ, Decker B, Roberts EA, Horowitz NS, Muto MG Jr. Prediction of DNA repair inhibitor response in Short-Term Patient-Derived ovarian cancer organoids. Cancer Discov. 2018;8(11):1404–21.

CAS  PubMed  PubMed Central  Google Scholar 

Benton G, Arnaoutova I, George J, Kleinman HK, Koblinski J. Matrigel: from discovery and ECM mimicry to assays and models for cancer research. Adv Drug Deliv Rev. 2014;79–80:3–18.

PubMed  Google Scholar 

Laury AR, Hornick JL, Perets R, Krane JF, Corson J, Drapkin R, et al. PAX8 reliably distinguishes ovarian serous tumors from malignant mesothelioma. Am J Surg Pathol. 2010;34(5):627–35.

PubMed  Google Scholar 

Ozcan A, Shen SS, Hamilton C, Anjana K, Coffey D, Krishnan B, et al. PAX 8 expression in non-neoplastic tissues, primary tumors, and metastatic tumors: A comprehensive immunohistochemical study. Mod Pathol. 2011;24(6):751–64.

CAS  PubMed  Google Scholar 

Seidman JD, Ronnett BM, Shih I-M, Cho KR, Kurman RJ. Epithelial tumors of the ovary. In: Kurman RJ, Ellenson LH, Ronnett BM, editors. Blaustein’s pathology of the female genital tract. 7th ed. Springer; 2019. pp. 841–966.

Tornos C, Soslow R, Chen S, Akram M, Hummer AJ, Abu-Rustum N, et al. Expression of WT1, CA 125, and GCDFP-15 as useful markers in the differential diagnosis of primary ovarian carcinomas versus metastatic breast cancer to the ovary. Am J Surg Pathol. 2005;29(11):1482–9.

PubMed  Google Scholar 

Vang R, Levine DA, Soslow RA, Zaloudek C, Shih IM, Kurman RJ. Molecular alterations of TP53 are a defining feature of ovarian high-grade serous carcinoma: A rereview of cases lacking TP53 mutations in the cancer genome atlas ovarian study. Int J Gynecol Pathol. 2016;35(1):48–55.

CAS  PubMed  PubMed Central  Google Scholar 

The Cancer Genome Atlas Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–15.

Google Scholar 

Köbel M, Ronnett BM, Singh N, Soslow RA, Gilks CB, McCluggage WG. Interpretation of P53 immunohistochemistry in endometrial carcinomas: toward increased reproducibility. Int J Gynecol Pathol. 2019;38(Suppl 1):123–31.

Google Scholar 

Köbel M, Piskorz AM, Lee S, Lui S, Lepage C, Marass F, et al. Optimized p53 immunohistochemistry is an accurate predictor of TP53 mutation in ovarian carcinoma. J Pathol Clin Res. 2016;2:247–58.

PubMed  PubMed Central  Google Scholar 

Singer G, Stöhr R, Cope L, Dehari R, Hartmann A, Cao DF, et al. Patterns of p53 mutations separate ovarian serous borderline tumors and low- and high-grade carcinomas and provide support for a new model of ovarian carcinogenesis: A mutational analysis with immunohistochemical correlation. Am J Surg Pathol. 2005;29(2):218–24.

PubMed  Google Scholar 

Bowen NJ, Logani S, Dickerson EB, Kapa LB, Akhtar M, Benigno BB, et al. Emerging roles for PAX8 in ovarian cancer and endosalpingeal development. Gynecol Oncol. 2007;104(2):331–7.

CAS  PubMed  Google Scholar 

Perets R, Wyant GA, Muto KW, Bijron JG, Poole BB, Chin KT, et al. Transformation of the fallopian tube secretory epithelium leads to High-Grade serous ovarian cancer in Brca;Tp53;Pten models. Cancer Cell. 2013;24(6):751–65.

CAS  PubMed  PubMed Central  Google Scholar 

Hu Z, Artibani M, Alsaadi A, Wietek N, Morotti M, Shi T, et al. The repertoire of serous ovarian cancer non-genetic heterogeneity revealed by single-cell sequencing of normal fallopian tube epithelial cells. Cancer Cell. 2020;37(2):226–e2427.

CAS  PubMed  Google Scholar 

Driehuis E, Kretzschmar K, Clevers H. Establishment of patient-derived cancer organoids for drug-screening applications. Nat Protoc. 2020;15(10):1–30.

Google Scholar 

Kessler M, Hoffmann K, Brinkmann V, Thieck O, Jackisch S, Toelle B, et al. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun. 2015;6:8989.

CAS  PubMed  Google Scholar 

Del Valle JS, Husetic A, Diek D, Rutgers LF, Asseler JD, Metzemaekers J et al. Human ovarian surface epithelium organoids as a platform to study tissue regeneration. JoVE [Internet]. 2024(210):e66797.

Nero C, Vizzielli G, Lorusso D, Cesari E, Daniele G, Loverro M, et al. Patient-derived organoids and high grade serous ovarian cancer: from disease modeling to personalized medicine. J Cancer Res Clin Oncol. 2024;150(3):146.

Google Scholar 

Hu H, Sun C, Chen J, Li Z. Organoids in ovarian cancer: a platform for disease modeling, precision medicine, and drug assessment. J Cancer Res Clin Oncol. 2024;150(3):146.

PubMed  PubMed Central  Google Scholar 

Ahmed AA, Etemadmoghadam D, Temple J, Lynch AG, Riad M, Sharma R, et al. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J Pathol. 2010;221(1):49–56.

CAS 

Comments (0)

No login
gif