Evaluating the effective segmentation of human lateral geniculate nucleus

Andrews TJ, Halpern SD, Purves D (1997) Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract. J Neurosci 17(8):2859–2868. https://doi.org/10.1523/JNEUROSCI.17-08-02859.1997

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chai Y, Handwerker DA, Marrett S, Gonzalez-Castillo J, Merriam EP, Hall A, Molfese PJ, Bandettini PA (2019) Visual temporal frequency preference shows a distinct cortical architecture using fMRI. Neuroimage 197:13–23. https://doi.org/10.1016/j.neuroimage.2019.04.048

Article  PubMed  Google Scholar 

Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. Neuroimage 9(2):179–194. https://doi.org/10.1006/nimg.1998.0395

Article  PubMed  CAS  Google Scholar 

DeSimone K, Schneider KA (2019) Distinguishing hemodynamics from function in the human LGN using a temporal response model. Vision 3(2):27. https://doi.org/10.3390/vision3020027

Article  PubMed  PubMed Central  Google Scholar 

DeSimone K, Viviano JD, Schneider KA (2015) Population receptive field estimation reveals new retinotopic maps in human subcortex. J Neurosci 35(27):9836–9847. https://doi.org/10.1523/JNEUROSCI.3840-14.2015

Article  PubMed  PubMed Central  CAS  Google Scholar 

Devlin JT, Sillery EL, Hall DA, Hobden P, Behrens TEJ, Nunes RG, Clare S, Matthews PM, Moore DR, Johansen-Berg H (2006) Reliable identification of the auditory thalamus using multi-modal structural analyses. Neuroimage 30(4):1112–1120. https://doi.org/10.1016/j.neuroimage.2005.11.025

Article  PubMed  CAS  Google Scholar 

Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302. https://doi.org/10.2307/1932409

Article  Google Scholar 

Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26(2):375–385. https://doi.org/10.1002/jmri.20969

Article  PubMed  Google Scholar 

Erskine D, Taylor JP, Firbank MJ, Patterson L, Onofrj M, O’Brien JT, McKeith IG, Attems J, Thomas AJ, Morris CM, Khundakar AA (2016) Changes to the lateral geniculate nucleus in Alzheimer’s disease but not dementia with Lewy bodies. Neuropathol Appl Neurobiol 42(4):366–376. https://doi.org/10.1111/nan.12249

Article  PubMed  CAS  Google Scholar 

Fellner F, Schmitt R, Trenkler J, Fellner C, Helmberger T, Obletter N, Bohm-Jurkovic H (1994) True proton density and T2-weighted turbo spin-echo sequences for routine MRI of the brain. Neuroradiology 36(8):591–597. https://doi.org/10.1007/BF00600415

Article  PubMed  CAS  Google Scholar 

Forno G, Saranathan M, Contador J, Guillen N, Falgàs N, Tort-Merino A, Balasa M, Sanchez-Valle R, Hornberger M, Lladó A (2023) Thalamic nuclei changes in early and late onset alzheimer’s disease. Curr Res Neurobiol 4:100084. https://doi.org/10.1016/j.crneur.2023.100084

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fujita N, Tanaka H, Takanashi M, Hirabuki N, Abe K, Yoshimura H, Nakamura H (2001) Lateral geniculate nucleus: anatomic and functional identification by use of MR imaging. AJNR Am J Neuroradiol 22(9):1719–1726

PubMed  PubMed Central  CAS  Google Scholar 

Giraldo-Chica M, Schneider KA (2018) Hemispheric asymmetries in the orientation and location of the lateral geniculate nucleus in dyslexia. Dyslexia 24(2):197–203. https://doi.org/10.1002/dys.1580

Article  PubMed  Google Scholar 

Grigorian A, McKetton L, Schneider KA (2016) Measuring connectivity in the primary visual pathway in human albinism using diffusion tensor imaging and tractography. J Vis Exp 114:53759. https://doi.org/10.3791/53759-v

Article  Google Scholar 

Iglesias JE, Insausti R, Lerma-Usabiaga G, Bocchetta M, Van Leemput K, Greve DN, Van Der Kouwe A, Fischl B, Caballero-Gaudes C, Paz-Alonso PM (2018) A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology. Neuroimage 183:314–326. https://doi.org/10.1016/j.neuroimage.2018.08.012

Article  PubMed  Google Scholar 

Jones EG (ed) (1985) The thalamus. Springer US. https://doi.org/10.1007/978-1-4615-1749-8

Kastner S, O’Connor DH, Fukui MM, Fehd HM, Herwig U, Pinsk MA (2004) Functional imaging of the human lateral geniculate nucleus and pulvinar. J Neurophysiol 91(1):438–448. https://doi.org/10.1152/jn.00553.2003

Article  PubMed  Google Scholar 

Mcketton L, Kelly KR, Schneider KA (2014) Abnormal lateral geniculate nucleus and optic chiasm in human albinism. J Comp Neurol 522(11):2680–2687. https://doi.org/10.1002/cne.23565

Article  PubMed  Google Scholar 

McKetton L, Williams J, Viviano JD, Yücel YH, Gupta N, Schneider KA (2015) High-resolution structural magnetic resonance imaging of the human subcortex  invivo and postmortem. J Vis Exp 106:53309. https://doi.org/10.3791/53309-v

Article  Google Scholar 

Mullen KT, Thompson B, Hess RF (2010) Responses of the human visual cortex and LGN to achromatic and chromatic temporal modulations: an fMRI study. J Vis 10(13):13–13. https://doi.org/10.1167/10.13.13

Article  PubMed  Google Scholar 

Oishi H, Takemura H, Amano K (2023) Macromolecular tissue volume mapping of lateral geniculate nucleus subdivisions in living human brains. Neuroimage 265:119777. https://doi.org/10.1016/j.neuroimage.2022.119777

Article  PubMed  CAS  Google Scholar 

Reuter M, Schmansky NJ, Rosas HD, Fischl B (2012) Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage 61(4):1402–1418. https://doi.org/10.1016/j.neuroimage.2012.02.084

Article  PubMed  Google Scholar 

Schumann CM, Buonocore MH, Amaral DG (2001) Magnetic resonance imaging of the post-mortem autistic brain. J Autism Dev Disord 31(6):561–568. https://doi.org/10.1023/A:1013294927413

Article  PubMed  CAS  Google Scholar 

Sherman SM, Guillery RW (eds) (2001) Exploring the thalamus. Elsevier

Simmen CF, Fierz FC, Michels L, Aldusary N, Landau K, Piccirelli M, Traber GL (2022) Lateral geniculate nucleus volume determined on MRI correlates with corresponding ganglion cell layer loss in acquired human postgeniculate lesions. Invest Ophthalmol Vis Sci 63(9):18. https://doi.org/10.1167/iovs.63.9.18

Article  PubMed  PubMed Central  Google Scholar 

Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23:S208–S219. https://doi.org/10.1016/j.neuroimage.2004.07.051

Article  PubMed  Google Scholar 

Vidal JP, Danet L, Péran P, Pariente J, Bach Cuadra M, Zahr NM, Barbeau EJ, Saranathan M (2024) Robust thalamic nuclei segmentation from T1-weighted MRI using polynomial intensity transformation. Brain Struct Funct 229(5):1087–1101. https://doi.org/10.1007/s00429-024-02777-5

Article  PubMed  PubMed Central  Google Scholar 

Yu Q, Zhang P, Qiu J, Fang F (2016) Perceptual learning of contrast detection in the human lateral geniculate nucleus. Curr Biol 26(23):3176–3182. https://doi.org/10.1016/j.cub.2016.09.034

Article  PubMed  CAS  Google Scholar 

Comments (0)

No login
gif