Neuroanatomical and neurochemical atlas of the spiny mouse () spinal cord

Aizawa H, Nagumo S, Hideyama T et al (2024) Morphometric analysis of spinal motor neuron degeneration in sporadic amyotrophic lateral sclerosis. J Neurol Sci 464:123177. https://doi.org/10.1016/j.jns.2024.123177

Article  PubMed  Google Scholar 

Alvarez FJ, Dewey DE, McMillin P, Fyffe RE (1999) Distribution of cholinergic contacts on Renshaw cells in the rat spinal cord: a light microscopic study. J Physiol 515(Pt 3):787–797. https://doi.org/10.1111/j.1469-7793.1999.787ab.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alvarez FJ, Benito-Gonzalez A, Siembab VC (2013) Principles of interneuron development learned from Renshaw cells and the motoneuron recurrent inhibitory circuit. Ann N Y Acad Sci 1279:22–31. https://doi.org/10.1111/nyas.12084

Article  CAS  PubMed  Google Scholar 

Ando S, Osanai D, Takahashi K et al (2020) Survival motor neuron protein regulates oxidative stress and inflammatory response in microglia of the spinal cord in spinal muscular atrophy. J Pharmacol Sci 144:204–211. https://doi.org/10.1016/j.jphs.2020.09.001

Article  CAS  PubMed  Google Scholar 

Andressen C, Blümcke I, Celio MR (1993) Calcium-binding proteins: selective markers of nerve cells. Cell Tissue Res 271:181–208. https://doi.org/10.1007/BF00318606

Article  CAS  PubMed  Google Scholar 

Anelli R, Heckman CJ (2005) The calcium binding proteins calbindin, parvalbumin, and calretinin have specific patterns of expression in the gray matter of Cat spinal cord. J Neurocytol 34:369–385. https://doi.org/10.1007/s11068-006-8724-2

Article  CAS  PubMed  Google Scholar 

Antal M, Freund TF, Polgár E (1990) Calcium-binding proteins, parvalbumin- and calbindin-D 28k-immunoreactive neurons in the rat spinal cord and dorsal root ganglia: a light and electron microscopic study. J Comp Neurol 295:467–484. https://doi.org/10.1002/cne.902950310

Article  CAS  PubMed  Google Scholar 

Antal M, Polgár E, Chalmers J et al (1991) Different populations of parvalbumin- and calbindin-D28k-immunoreactive neurons contain GABA and accumulate 3H-D-aspartate in the dorsal Horn of the rat spinal cord. J Comp Neurol 314:114–124. https://doi.org/10.1002/cne.903140111

Article  CAS  PubMed  Google Scholar 

Arvidsson U, Ulfhake B, Cullheim S et al (1992) Distribution of Calbindin D28k-like immunoreactivity (LI) in the monkey ventral horn: do Renshaw cells contain Calbindin D28k-LI? J Neurosci 12:718–728. https://doi.org/10.1523/JNEUROSCI.12-03-00718.1992

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asher RJ, Lin KH, Kardjilov N, Hautier L (2011) Variability and constraint in the mammalian vertebral column. J Evol Biol 24:1080–1090. https://doi.org/10.1111/j.1420-9101.2011.02240.x

Article  CAS  PubMed  Google Scholar 

Baimbridge KG, Celio MR, Rogers JH (1992) Calcium-binding proteins in the nervous system. Trends Neurosci 15:303–308. https://doi.org/10.1016/0166-2236(92)90081-i

Article  CAS  PubMed  Google Scholar 

Bakhit C, Armanini M, Wong WL et al (1991) Increase in nerve growth factor-like immunoreactivity and decrease in choline acetyltransferase following contusive spinal cord injury. Brain Res 554:264–271. https://doi.org/10.1016/0006-8993(91)90199-6

Article  CAS  PubMed  Google Scholar 

Barber RP, Phelps PE, Houser CR et al (1984) The morphology and distribution of neurons containing choline acetyltransferase in the adult rat spinal cord: an immunocytochemical study. J Comp Neurol 229:329–346. https://doi.org/10.1002/cne.902290305

Article  CAS  PubMed  Google Scholar 

Beaud M-L, Rouiller EM, Bloch J et al (2012) Invasion of lesion territory by regenerating fibers after spinal cord injury in adult macaque monkeys. Neuroscience 227:271–282. https://doi.org/10.1016/j.neuroscience.2012.09.052

Article  CAS  PubMed  Google Scholar 

Bellofiore N, Evans J (2019) Monkeys, mice and menses: the bloody anomaly of the spiny mouse. J Assist Reprod Genet 36:811–817. https://doi.org/10.1007/s10815-018-1390-3

Article  PubMed  PubMed Central  Google Scholar 

Biagioni F, Ferrucci M, Ryskalin L et al (2017) Protective effects of long-term lithium administration in a slowly progressive SMA mouse model. Arch Ital Biol 155:118–130. https://doi.org/10.12871/00039829201749

Article  PubMed  Google Scholar 

Bican O, Minagar A, Pruitt AA (2013) The spinal cord: a review of functional neuroanatomy. Neurol Clin 31:1–18. https://doi.org/10.1016/j.ncl.2012.09.009

Article  PubMed  Google Scholar 

Bickford ME, Guido W, Godwin DW (1998) Neurofilament proteins in Y-Cells of the Cat lateral geniculate nucleus: normal expression and alteration with visual deprivation. J Neurosci 18:6549–6557. https://doi.org/10.1523/jneurosci.18-16-06549.1998

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blok BFM (2002) Central pathways controlling micturition and urinary continence. Urology 59:13–17. https://doi.org/10.1016/s0090-4295(01)01633-8

Article  PubMed  Google Scholar 

Blottner D, Baumgarten HG (1992) Nitric oxide synthetase (NOS)-containing sympathoadrenal cholinergic neurons of the rat IML-cell column: evidence from histochemistry, immunohistochemistry, and retrograde labeling. J Comp Neurol 316:45–55. https://doi.org/10.1002/cne.903160105

Article  CAS  PubMed  Google Scholar 

Borges LF, Iversen SD (1986) Topography of choline acetyltransferase immunoreactive neurons and fibers in the rat spinal cord. Brain Res 362:140–148. https://doi.org/10.1016/0006-8993(86)91407-1

Article  CAS  PubMed  Google Scholar 

Browne TJ, Smith KM, Gradwell MA et al (2024) Lateral lamina V projection neuron axon collaterals connect sensory processing across the dorsal Horn of the mouse spinal cord. Sci Rep 14:26354. https://doi.org/10.1038/s41598-024-73620-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buscaglia G, Northington KR, Moore JK, Bates EA (2020) Reduced TUBA1A tubulin causes defects in trafficking and impaired adult motor behavior. eNeuro. https://doi.org/10.1523/ENEURO.0045-20.2020

Article  PubMed  PubMed Central  Google Scholar 

Calingasan NY, Chen J, Kiaei M, Beal MF (2005) Beta-amyloid 42 accumulation in the lumbar spinal cord motor neurons of amyotrophic lateral sclerosis patients. Neurobiol Dis 19:340–347. https://doi.org/10.1016/j.nbd.2005.01.012

Article  CAS  PubMed  Google Scholar 

Calka J, Zalecki M, Wasowicz K et al (2008) A comparison of the distribution and morphology of ChAT-, VAChT-immunoreactive and AChE-positive neurons in the thoracolumbar and sacral spinal cord of the pig. Vet Med 53:434–444. https://doi.org/10.17221/1925-vetmed

Article  CAS  Google Scholar 

Capogrosso M, Wagner FB, Gandar J et al (2018) Configuration of electrical spinal cord stimulation through real-time processing of gait kinematics. Nat Protoc 13:2031–2061. https://doi.org/10.1038/s41596-018-0030-9

Article  CAS  PubMed  Google Scholar 

Caraballo-Miralles V, Cardona-Rossinyol A, Garcera A et al (2013) Notch signaling pathway is activated in motoneurons of spinal muscular atrophy. Int J Mol Sci 14:11424–11437. https://doi.org/10.3390/ijms140611424

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carneiro M, Vieillard J, Andrade P et al (2021) A loss-of-function mutation in RORB disrupts saltatorial locomotion in rabbits. PLoS Genet 17:e1009429. https://doi.org/10.1371/journal.pgen.1009429

Article  CAS  PubMed 

Comments (0)

No login
gif