Neuron soma size and density measurements in rat striatal regions disaggregated by sex and estrous cycle phase

Almey A, Filardo EJ, Milner TA, Brake WG (2012) Estrogen receptors are found in glia and at extranuclear neuronal sites in the dorsal striatum of female rats: evidence for cholinergic but not dopaminergic colocalization. Endocrinology 153:5373–5383. https://doi.org/10.1210/en.2012-1458

Article  CAS  PubMed  PubMed Central  Google Scholar 

Almey A, Milner TA, Brake WG (2016) Estrogen receptor α and G-protein coupled Estrogen receptor 1 are localized to GABAergic neurons in the dorsal striatum. Neurosci Lett 622:118–123. https://doi.org/10.1016/j.neulet.2016.04.023

Article  CAS  PubMed  PubMed Central  Google Scholar 

Almey A, Milner TA, Brake WG (2022) Estrogen receptors observed at extranuclear neuronal sites and in glia in the nucleus accumbens core and shell of the female rat: evidence for localization to catecholaminergic and GABAergic neurons. J Comp Neurol 530:2056–2072. https://doi.org/10.1002/cne.25320

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amorin N, Calisi RM (2015) Measurements of neuronal Soma size and estimated peptide concentrations in addition to cell abundance offer a higher resolution of seasonal and reproductive influences of GnRH-I and GnIH in European starlings. Integr Comp Biol 55(2):332–342. https://doi.org/10.1093/icb/icv063

Article  CAS  PubMed  Google Scholar 

Arnold AP (2017) A general theory of sexual differentiation. J Neurosci Res 95(1–2):291–300. https://doi.org/10.1002/jnr.23884

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aziz HC, Mangieri RA (2024) Sex differences in membrane properties and cellular excitability of dopamine D1 receptor-expressing neurons within the shell of the nucleus accumbens of pre- and mid-adolescent mice. Biology Sex Differences 15:54. https://doi.org/10.1186/s13293-024-00631-1

Article  CAS  Google Scholar 

Ball GF, Macdougall-Shackleton SA (2001) Sex differences in songbirds 25 years later: what have we learned and where do we go? Microsc Res Tech 54(6):327–334. https://doi.org/10.1002/jemt.1146

Article  CAS  PubMed  Google Scholar 

Beery AK, Zucker I (2011) Sex bias in neuroscience and biomedical research. Neurosci Biobehav Rev 35(3):565–572. https://doi.org/10.1016/j.neubiorev.2010.07.002

Article  PubMed  Google Scholar 

Beeson ALS, Meitzen J (2023) Estrous cycle impacts on dendritic spine plasticity in rat nucleus accumbens core and shell and caudate–putamen. J Comp Neurol 531(7) Article 7. https://doi.org/10.1002/cne.25460

Blume SR, Freedberg M, Vantrease JE, Chan R, Padival M, Record MJ, DeJoseph MR, Urban JH, Rosenkranz JA (2017) Sex- and Estrus-Dependent differences in rat basolateral amygdala. J Neurosci 37(44):10567–10586. https://doi.org/10.1523/JNEUROSCI.0758-17.2017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bradshaw JL, Wilson EN, Mabry S, Shrestha P, Gardner JJ, Cunningham RL (2024) Impact of sex and hypoxia on brain region-specific expression of membrane androgen receptor AR45 in rats. Front Endocrinol 15. https://doi.org/10.3389/fendo.2024.1420144

Breedlove SM, Arnold AP (1981) Sexually dimorphic motor nucleus in the rat lumbar spinal cord: response to adult hormone manipulation, absence in androgen-insensitive rats. Brain Res 225(2):297–307. https://doi.org/10.1016/0006-8993(81)90837-4

Article  CAS  PubMed  Google Scholar 

Brimblecombe KR, Cragg SJ (2017) The striosome and matrix compartments of the striatum: A path through the labyrinth from neurochemistry toward function. ACS Chem Neurosci 8(2):235–242. https://doi.org/10.1021/acschemneuro.6b00333

Article  CAS  PubMed  Google Scholar 

Butler-Struben HM, Kentner AC, Trainor BC (2022) What’s wrong with my experiment? The impact of hidden variables on neuropsychopharmacology research. Neuropsychopharmacology 47(7):1285–1291. https://doi.org/10.1038/s41386-022-01309-1

Article  PubMed  PubMed Central  Google Scholar 

Campi KL, Jameson CE, Trainor BC (2013) Sexual dimorphism in the brain of the monogamous California mouse (Peromyscus californicus). Brain Behav Evol 81(4):236–249. https://doi.org/10.1159/000353260

Article  PubMed  Google Scholar 

Cao J, Patisaul HB (2011) Sexually dimorphic expression of hypothalamic Estrogen receptors a and β and Kiss1 in neonatal male and female rats. J Comp Neurol 519(15). https://doi.org/10.1002/cne.22648

Cao J, Dorris DM, Meitzen J (2016) Neonatal masculinization blocks increased excitatory synaptic input in female rat nucleus accumbens core. Endocrinology 157(8):3181–3196. https://doi.org/10.1210/en.2016-1160

Article  CAS  PubMed  PubMed Central  Google Scholar 

Catalfio AM, Fetterly TL, Nieto AM, Robinson TE, Ferrario CR (2023) Cocaine-induced sensitization and glutamate plasticity in the nucleus accumbens core: effects of sex. Biology Sex Differences 14(1):41. https://doi.org/10.1186/s13293-023-00525-8

Article  CAS  Google Scholar 

Chapp AD, Nwakama CA, Jagtap PP, Phan C-MH, Thomas MJ, Mermelstein PG (2024) Fundamental sex differences in Cocaine-Induced plasticity of dopamine D1 Receptor – and D2 Receptor–Expressing medium spiny neurons in the mouse nucleus accumbens shell. Biol Psychiatry Global Open Sci 4(3):100295. https://doi.org/10.1016/j.bpsgos.2024.100295

Article  Google Scholar 

Chen X, Grisham W, Arnold AP (2009) X chromosome number causes sex differences in gene expression in adult mouse striatum. Eur J Neurosci 29(4):768–776. https://doi.org/10.1111/j.1460-9568.2009.06610.x

Article  PubMed  Google Scholar 

Clemens AM, Lenschow C, Beed P, Li L, Sammons R, Naumann RK, Wang H, Schmitz D, Brecht M (2019) Estrus-Cycle regulation of cortical Inhibition. Curr Biol 29(4):605–615e6. https://doi.org/10.1016/j.cub.2019.01.045

Article  CAS  PubMed  Google Scholar 

Cooke BM (2006) Steroid-dependent plasticity in the medial amygdala. Neuroscience 138(3):997–1005. https://doi.org/10.1016/j.neuroscience.2005.06.018

Article  CAS  PubMed  Google Scholar 

DePoy LM, Petersen KA, Zong W, Ketchesin KD, Matthaei RC, Yin R, Perez MS, Vadnie CA, Becker-Krail D, Scott MR, Tseng GC, McClung CA (2024) Cell-type and sex-specific rhythmic gene expression in the nucleus accumbens. Mol Psychiatry 29(10):3117–3127. https://doi.org/10.1038/s41380-024-02569-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dorris DM, Cao J, Willett JA, Hauser CA, Meitzen J (2015) Intrinsic excitability varies by sex in prepubertal striatal medium spiny neurons. J Neurophysiol 113(3). https://doi.org/10.1152/jn.00687.2014

Douton JE, Carelli RM (2023) Unraveling sex differences in affect processing: unique oscillatory signaling dynamics in the infralimbic cortex and nucleus accumbens shell. Biol Psychiatry Global Open Sci 4(1):354–362. https://doi.org/10.1016/j.bpsgos.2023.08.011

Article  Google Scholar 

Forlano PM, Woolley CS (2010) Quantitative analysis of pre-and postsynaptic sex differences in the nucleus accumbens. J Comp Neurol 518(8):1330–1348. https://doi.org/10.1002/cne.22279

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garman RH (1990) Artifacts in routinely immersion fixed nervous tissue. Toxicol Pathol 18:149–153. https://doi.org/10.1177/019262339001800120

Article  CAS  PubMed  Google Scholar 

Gorski RA, Harlan RE, Jacobson CD, Shryne JE, Southam AM (1980) Evidence for the existence of a sexually dimorphic nucleus in the preoptic area of the rat. J Comp Neurol 193(2):529–539. https://doi.org/10.1002/cne.901930214

Article  CAS  PubMed  Google Scholar 

Graveland GA, Difiglia M (1985) The frequency and distribution of medium-sized neurons with indented nuclei in the primate and rodent neostriatum. Brain Res 327:307–311. https://doi.org/10.1016/0006-8993(85)91524-0

Article  CAS  PubMed  Google Scholar 

Gross KS, Moore KM, Meisel RL, Mermelstein PG (2018) mGluR5 mediates Dihydrotestosterone-Induced nucleus accumbens structural plasticity, but not conditioned reward. Front NeuroSci 12:855. https://doi.org/10.3389/fnins.2018.00855

Article  PubMed  PubMed Central  Google Scholar 

Guillery RW, Herrup K (1997) Quantification without pontification: choosing a method for counting objects in sectioned tissues. J Comp Neurol 386(1):2–7. https://doi.org/10.1002/(SICI)1096-9861::AID-CNE2>3.0.CO;2-6

Article  CAS 

Comments (0)

No login
gif