Aboelnaga N, Elsayed SW, Abdelsalam NA, Salem S, Saif NA, Elsayed M, Ayman S, Nasr M, Elhadidy M (2024) Deciphering the dynamics of methicillin-resistant Staphylococcus aureus biofilm formation: from molecular signaling to nanotherapeutic advances. Cell Commun Signal 22:188. https://doi.org/10.1186/S12964-024-01511-2
Article CAS PubMed PubMed Central Google Scholar
Alghonmeen RD, Dmour SM, Saghir SAM, Abushattal S, Alnaimat S, Al-Zharani M, Nasr FA, Althunibat OY (2024) Anti-MRSA and cytotoxic activities of different solvent extracts from Artemisia herba-alba grown in Shubak Jordan. Open Vet J 14:990–1001. https://doi.org/10.5455/OVJ.2024.V14.I4.6
Article PubMed PubMed Central Google Scholar
Bich VNT, Nguyen TK, Thu TD, Tran LTT, Nguyen SVD, Han HL, Pham LHD, Thanh TH, Duong VH, Trieu TA, Tran MH, Pham PTV (2023) Investigating the antibacterial mechanism of Ampelopsis cantoniensis extracts against methicillin-resistant Staphylococcus aureus via in vitro and in silico analysis. J Biomol Struct Dyn 41:14080–14091. https://doi.org/10.1080/07391102.2023.2187218
Bozic DD, Milenkovic M, Ivkovic B, Cirkovic I (2014) Newly-synthesized chalcones-inhibition of adherence and biofilm formation of methicillin-resistant Staphylococcus aureus. Braz J Microbiol 45:263. https://doi.org/10.1590/S1517-83822014000100038
Article PubMed PubMed Central Google Scholar
Brambilla LZS, Endo EH, Cortez DAG, Filho BPD (2017) Anti-biofilm activity against Staphylococcus aureus MRSA and MSSA of neolignans and extract of Piper regnellii. Rev Bras Farmacogn 27:112–117. https://doi.org/10.1016/J.BJP.2016.08.008/METRICS
Cruz CD, Shah S, Tammela P (2018) Defining conditions for biofilm inhibition and eradication assays for Gram-positive clinical reference strains. BMC Microbiol 18:173. https://doi.org/10.1186/s12866-018-1321-6
Article CAS PubMed PubMed Central Google Scholar
Dosoky NS, Pokharel SK, Setzer WN, William SCN (2015) Leaf essential oil composition antimicrobial and cytotoxic activities of Cleistocalyx operculatus from Hetauda Nepal. Am J Essent Oil Nat Prod 3:34–37
Dursun AD, Uçak S, Yavuz O, Yurt MNZ, Taşbaşı BB, Acar EE, ÖzalpVC, Sudağıdan M (2022) Determination of the effect of glucose sucrose and sodium chloride addition in different culture media on biofilm formation of methicillin resistant Staphylococcus aureus. ACMJ 4:152–157. https://doi.org/10.38053/ACMJ.1037458
Eardley-Brunt ASJ, Jones A, Mills T, Song L, Kotronias R, Lapolla P, Handa A, Lee R, Channon K, Maria GL, Vallance C (2025) Development of an optimised method for the analysis of human blood plasma samples by atmospheric solids analysis probe mass spectrometry. Int J Mass Spectrom 508:117386. https://doi.org/10.1016/J.IJMS.2024.117386
Elshikh M, Ahmed S, Funston S, Dunlop P, McGaw M, Marchant R, Banat IM (2016) Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnol Lett 38:1015–1019. https://doi.org/10.1007/s10529-016-2079-2
Article CAS PubMed PubMed Central Google Scholar
Garcia MAR, Theodoro RS, Sardi JCO, Santos MB, Ayusso GM, Pavan FR, Costa AR, Santa CLM, Rosalen PL, Regasini LO (2021) Design synthesis and antibacterial activity of chalcones against MSSA and MRSA planktonic cells and biofilms. Bioorg Chem 116:105279. https://doi.org/10.1016/J.BIOORG.2021.105279
Article CAS PubMed Google Scholar
Ha TKQ, Dao TT, Nguyen NH, Kim J, Kim E, Cho TO, Oh WK (2016) Antiviral phenolics from the leaves of Cleistocalyx operculatus. Fitoterapia 110:135–141. https://doi.org/10.1016/J.FITOTE.2016.03.006
Article CAS PubMed Google Scholar
Kaneko H, Nakaminami H, Ozawa K, Wajima T, Noguchi N (2021) In vitro anti-biofilm effect of anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) agents against the USA300 clone. J Glob Antimicrob Resist 24:63–71. https://doi.org/10.1016/J.JGAR.2020.11.026
Article CAS PubMed Google Scholar
Kang J, Jin W, Wang J, Sun Y, Wu X, Liu L (2019) Antibacterial and anti-biofilm activities of peppermint essential oil against Staphylococcus aureus. LWT 101:639–645. https://doi.org/10.1016/J.LWT.2018.11.093
Kim YJ, Yu HH, Park YJ, Lee NK, Paik HD (2020) Anti-biofilm activity of cell-free supernatant of Saccharomyces cerevisiae against Staphylococcus aureus. J Microbiol Biotechnol 30:1854–1861. https://doi.org/10.4014/JMB.2008.08053
Article CAS PubMed PubMed Central Google Scholar
Kramell A, Porbeck F, Kluge R, Wiesner A, Csuk R (2015) A fast and reliable detection of indigo in historic and prehistoric textile samples. J Mass Spectrom 50:1039–1043. https://doi.org/10.1002/JMS.3625
Article CAS PubMed Google Scholar
Lade H, Park JH, Chung SH, Kim IH, Kim JM, Joo HS, Kim JS (2019) Biofilm formation by staphylococcus aureus clinical isolates is differentially affected by glucose and sodium chloride supplemented culture media. J Clin Med 8:1853. https://doi.org/10.3390/JCM8111853
Article CAS PubMed PubMed Central Google Scholar
Liu P, Kang X, Chen X, Luo X, Li C, Wang G (2024) Quercetin targets SarA of methicillin-resistant Staphylococcus aureus to mitigate biofilm formation. Microbiol Spectr 12:e0272223. https://doi.org/10.1128/SPECTRUM.02722-23
Mai TT, Fumie N, Van CN (2009) Antioxidant activities and hypolipidemic effects of an aqueous extract from flower buds of Cleistocalyx operculatus (Roxb.) Merr and Perry. J Food Biochem 33:790–807. https://doi.org/10.1111/J.1745-4514.2009.00251.X
Manner S, Skogman M, Goeres D, Vuorela P, Fallarero A (2013) Systematic exploration of natural and synthetic flavonoids for the inhibition of Staphylococcus aureus biofilms. Int J Mol Sci 14:19434–19451. https://doi.org/10.3390/ijms141019434
Article CAS PubMed PubMed Central Google Scholar
Matilla-Cuenca L, Gil C, Cuesta S, Rapún-Araiz B, Žiemytė M, Mira A, Lasa I, Valle J (2020) Antibiofilm Activity of Flavonoids on Staphylococcal Biofilms through Targeting BAP Amyloids Sci Rep 10:18968. https://doi.org/10.1038/S41598-020-75929-2
Mazmanian SK, Liu G, Jensen ER, Lenoy E, Schneewind O (2000) Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. PNAS 97:5510–5515. https://doi.org/10.1073/PNAS.080520697
Article CAS PubMed PubMed Central Google Scholar
Min BS, Cuong TD, Lee JS, Woo MH, Hung TM (2010) Flavonoids from Cleistocalyx operculatus buds and their cytotoxic activity. Bull Korean Chem Soc 31:2392–2394. https://doi.org/10.5012/BKCS.2010.31.8.2392
Mogana R, Adhikari A, Tzar MN, Ramliza R, Wiart C (2020) Antibacterial activities of the extracts fractions and isolated compounds from Canarium patentinervium Miq against bacterial clinical isolates. BMC Complement Med Ther 20:55. https://doi.org/10.1186/s12906-020-2837-5
Article CAS PubMed PubMed Central Google Scholar
Morita Y, Weinert EE, Davamani AF, Wang L, Ming D, Wang D, Cao F, Xiang H, Mu D, Cao J, Li B, Zhong L, Dong X, Zhong X, Wang T (2017) Kaempferol inhibits the primary attachment phase of biofilm formation in Staphylococcus aureus. Front Microbiol 8:2263. https://doi.org/10.3389/fmicb.2017.02263
Ngo TBV, Dao TTT, Tran TH, Pham TVP (2023) In-vitro antibacterial activity of the fractions from Cleistocalyx operculatus (Roxb.) Merret Perry against Staphylococcus aureus. UD-JST 21:56–60. https://doi.org/10.31130/UD-JST.2023.056E
Nguyen PTM, Schultze N, Boger C, Alresley Z, Bolhuis A, Lindequist U (2017) Anticaries and antimicrobial activities of methanolic extract from leaves of Cleistocalyx operculatus L. Asian Pac J Trop Biomed 7:43–48. https://doi.org/10.1016/J.APJTB.2016.11.009
Nguyen TNT, Le TD, Nguyen PL, Nguyen DH, Nguyen HVT, Nguyen TK, Tran MH, Le THV (2022) α-Glucosidase inhibitory activity and quantitative contribution of phenolic compounds from Vietnamese Aquilaria crassna leaves. Nat Prod Commun 17. https://doi.org/10.1177/1934578X221080326
Nowakowska Z (2007) A review of anti-infective and anti-inflammatory chalcones. Eur J Med Chem 42:125–137. https://doi.org/10.1016/J.EJMECH.2006.09.019
Article CAS PubMed Google Scholar
O’Neill E, Pozzi C, Houston P, Humphreys H, Robinson DA, Loughman A, Foster TJ, O’Gara JP (2008) A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins FnBPA and FnBPB. J Bacteriol 190:3835–3850. https://doi.org/10.1128/JB.00167-08
Article CAS PubMed PubMed Central Google Scholar
Ouyang P, He X, Yuan ZW, Yin ZQ, Fu H, Lin J, He C, Liang X, Lv C, Shu G, Yuan ZX, Song X, Li L, Yin L (2018) Erianin against Staphylococcus aureus infection via inhibiting sortase A. Toxins 10:385. https://doi.org/10.3390/TOXINS10100385
Comments (0)