Ali SA, Datusalia AK (2024) Protective effects of Tinospora cordifolia Miers extract against hepatic and neurobehavioral deficits in thioacetamide-induced hepatic encephalopathy in rats via modulating hyperammonemia and glial cell activation. J Ethnopharmacol 323:117700. https://doi.org/10.1016/j.jep.2023.117700
Article PubMed CAS Google Scholar
Aralbaeva AN, Mamataeva AT, Zhaparkulova NI et al (2017) A composition of medicinal plants with an enhanced ability to suppress microsomal lipid peroxidation and a protective activity against carbon tetrachloride-induced hepatotoxicity. Biomed Pharmacother 96:1283–1291. https://doi.org/10.1016/j.biopha.2017.11.085
Article PubMed CAS Google Scholar
Babenko NA, Shakhova EG (2008) Effects of flavonoids on sphingolipid turnover in the toxin-damaged liver and liver cells. Lipids Health Dis 7(1):1. https://doi.org/10.1186/1476-511X-7-1
Article PubMed PubMed Central CAS Google Scholar
Bandaruk Y, Mukai R, Terao J (2012) Evaluation of the inhibitory effects of quercetin-related flavonoids and tea catechins on the monoamine oxidase-A reaction in mouse brain mitochondria. J Agric Food Chem 60(41):10270–10277. https://doi.org/10.1021/jf303055b
Article PubMed CAS Google Scholar
Baraka SM, Saleh DO, Ghaly NS et al (2020) Flavonoids from barnebydendron riedelii leaf extract mitigate thioacetamide-induced hepatic encephalopathy in rats: the interplay of NF-κB/IL-6 and Nrf2/HO-1 signaling pathways. Bioorg Chem 105:104444. https://doi.org/10.1016/j.bioorg.2020.104444
Article PubMed CAS Google Scholar
Bergeron M, Reader TA, Layrargues GP, Butterworth RF (1989) Monoamines and metabolites in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy. Neurochem Res 14(9):853–859. https://doi.org/10.1007/BF00964814
Article PubMed CAS Google Scholar
Beutler E (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888
Borg J, Warter JM, Schlienger JL et al (1982) Neurotransmitter modifications in human cerebrospinal fluid and serum during hepatic encephalopathy. J Neurol Sci 57(2–3):343–356. https://doi.org/10.1016/0022-510X(82)90040-5
Article PubMed CAS Google Scholar
Butterworth RF (2008) Pathophysiology of hepatic encephalopathy: the concept of synergism. Hepatol Res 38(S1):S116–S121. https://doi.org/10.1111/j.1872-034X.2008.00436.x
Article PubMed CAS Google Scholar
Carradori S, D’Ascenzio M, Chimenti P et al (2016) Selective MAO-B inhibitors: a lesson from natural products. Mol Divers 20(1):219–243. https://doi.org/10.1007/s11030-013-9490-6
Chen D, Wang CY, Lambert JD et al (2005) Inhibition of human liver catechol-O-methyltransferase by tea catechins and their metabolites: structure–activity relationship and molecular-modeling studies. Biochem Pharmacol 69(10):1523–1531. https://doi.org/10.1016/j.bcp.2005.01.024
Article PubMed CAS Google Scholar
Chen Y, Peng F, Xing Z et al (2022) Beneficial effects of natural flavonoids on neuroinflammation. Front Immunol 13:1006434. https://doi.org/10.3389/fimmu.2022.1006434
Article PubMed PubMed Central CAS Google Scholar
Chojnacki C, Walecka-Kapica E, Klupińska G et al (2012) Serotonin and melatonin secretion and metabolism in patients with liver cirrhosis. Pol Arch Med Wewn 122(9):392–397
Article PubMed CAS Google Scholar
Čopra-Janićijević A, Čulum D, Vidic D et al (2024) Chemical composition and antioxidant activity of fraxinus Ornus L. and fraxinus excelsior L. Kem Ind 73(1–2):19–25. https://doi.org/10.15255/KUI.2023.021
Cuilleret G, Pomier-Layrargues G, Pons F et al (1980) Changes in brain catecholamine levels in human cirrhotic hepatic encephalopathy. Gut 21(7):565–569. https://doi.org/10.1136/gut.21.7.565
Article PubMed PubMed Central CAS Google Scholar
Dasarathy S, Mookerjee RP, Rackayova V et al (2017) Ammonia toxicity: from head to toe? Metab Brain Dis 32(2):529–538. https://doi.org/10.1007/s11011-016-9938-3
Article PubMed CAS Google Scholar
DeMorrow S, Cudalbu C, Davies N et al (2021) ISHEN guidelines on animal models of hepatic encephalopathy. Liver Int 41(7):1474–1488. https://doi.org/10.1111/liv.14911
Article PubMed PubMed Central Google Scholar
Ebaid H, Bashandy SA, Morsy FA et al (2023) Protective effect of gallic acid against thioacetamide-induced metabolic dysfunction of lipids in hepatic and renal toxicity. J King Saud Univ 35(3):102531. https://doi.org/10.1016/j.jksus.2022.102531
El-Magd NFA, El-Kashef DH, El-Sherbiny M, Eraky SM (2023) Hepatoprotective and cognitive-enhancing effects of hesperidin against thioacetamide-induced hepatic encephalopathy in rats. Life Sci 313:121280. https://doi.org/10.1016/j.lfs.2022.121280
Ezhilarasan D (2023) Molecular mechanisms in thioacetamide-induced acute and chronic liver injury models. Environ Toxicol Pharmacol 99:104093. https://doi.org/10.1016/j.etap.2023.104093
Article PubMed CAS Google Scholar
Gallego-Durán R, Hadjihambi A et al (2024) Ammonia-induced stress response in liver disease progression and hepatic encephalopathy. Nat Rev Gastroenterol Hepatol 21(11):774–791. https://doi.org/10.1038/s41575-024-00970-9
García-Ayllón MS, Silveyra MX, Candela A et al (2006) Changes in liver and plasma acetylcholinesterase in rats with cirrhosis induced by bile duct ligation. Hepatology 43(3):444–453. https://doi.org/10.1002/hep.21071
Article PubMed CAS Google Scholar
García-Ayllón MS, Cauli O, Silveyra MX et al (2008) Brain cholinergic impairment in liver failure. Brain 131(11):2946–2956. https://doi.org/10.1093/brain/awn209
Article PubMed PubMed Central Google Scholar
Gil-Gómez A, Muñoz-Hernández R, Martínez F et al (2024) Hepatic encephalopathy: experimental drugs in development and therapeutic potential. Expert Opin Investig Drugs 1–12. https://doi.org/10.1080/13543784.2024.2434053
Hadesman R, Wiesner RH, Go VL, Tyce GM (1995) Concentrations of 3,4-dihydroxyphenylalanine and catecholamines and metabolites in brain in an anhepatic model of hepatic encephalopathy. J Neurochem 65(3):1166–1175. https://doi.org/10.1046/j.1471-4159.1995.65031166.x
Article PubMed CAS Google Scholar
Hudson M, Schuchmann M (2019) Long-term management of hepatic encephalopathy with lactulose and/or rifaximin: a review of the evidence. Eur J Gastroenterol Hepatol 31(4):434–450. https://doi.org/10.1097/MEG.0000000000001311
Iranpanah A, Fakhri S, Bahrami G et al (2024) Protective effect of a hydromethanolic extract from Fraxinus excelsior L. bark against a rat model of aluminum chloride-induced Alzheimer’s disease: relevance to its anti-inflammatory and antioxidant effects. J Ethnopharmacol 323:117708. https://doi.org/10.1016/j.jep.2024.117708
Article PubMed CAS Google Scholar
Jomova K, Alomar SY, Alwasel SH et al (2024) Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch Toxicol 98(5):1323–1367. https://doi.org/10.1007/s00204-024-03696-4
Article PubMed PubMed Central CAS Google Scholar
Jones DP (2002) Redox potential of GSH/GSSG couple: assay and biological significance. Methods Enzymol 348:93–112. https://doi.org/10.1016/S0076-6879(02)48630-2
Article PubMed CAS Google Scholar
Kabatnik M, Heist M, Beiderlinden K, Peters J (1999) Hepatic encephalopathy—a physostigmine-reactive central anticholinergic syndrome? Eur J Anaesthesiol 16(2):140–142. https://doi.org/10.1046/j.1365-2346.1999.00456.x
Comments (0)