Impact of agmatine on cerebral astrocyte reactivity, neurodegeneration, and oxidative stress in bile duct-ligated rats

Ahmadi S, Khaledi S (2020) Anxiety in rats with bile duct ligation is associated with activation of JNK3 mitogen-activated protein kinase in the hippocampus. Metab Brain Dis 35:579–588. https://doi.org/10.1007/s11011-020-00542-1

Article  PubMed  CAS  Google Scholar 

Ahmadi S, Poureidi M, Rostamzadeh J (2015) Hepatic encephalopathy induces site-specific changes in gene expression of GluN1 subunit of NMDA receptor in rat brain. Metab Brain Dis 30:1035–1041. https://doi.org/10.1007/s11011-015-9669-x

Article  PubMed  CAS  Google Scholar 

Ahmed N, Aljuhani N, Al-Hujaili HS et al (2018) Agmatine protects against sodium valproate–induced hepatic injury in mice via modulation of nuclear factor-κB/inducible nitric oxide synthetase pathway. J Biochem Mol Toxicol 32:1–6. https://doi.org/10.1002/jbt.22227

Article  CAS  Google Scholar 

Ara C, Kirimlioglu H, Karabulut AB et al (2005) Protective effect of resveratrol against oxidative stress in cholestasis. J Surg Res 127:112–117. https://doi.org/10.1016/j.jss.2005.01.024

Article  PubMed  CAS  Google Scholar 

Bosoi CR, Rose CF (2013) Oxidative stress: A systemic factor implicated in the pathogenesis of hepatic encephalopathy. Metab Brain Dis 28:175–178. https://doi.org/10.1007/S11011-012-9351-5/FIGURES/2

Article  PubMed  CAS  Google Scholar 

Botros M, Sikaris KA (2013) The de ritis ratio: the test of time. Clin Biochem Rev 34:117–130

PubMed  PubMed Central  Google Scholar 

Butterworth RF (2011) Hepatic encephalopathy: a central neuroinflammatory disorder? Hepatology 53:1372–1376

Article  PubMed  Google Scholar 

Cheng X, Wang J, Sun X et al (2019) Morphological and functional alterations of astrocytes responding to traumatic brain injury. J Integr Neurosci 18:203–215. https://doi.org/10.31083/J.JIN.2019.02.110/1757-448X-18-2-203/IMG_5.JPG

Article  PubMed  Google Scholar 

Cho I, Koo BN, Kam EH et al (2020) Bile duct ligation of C57BL/6 mice as a model of hepatic encephalopathy. Anesth Pain Med 15(1):19–27. https://doi.org/10.17085/apm.2020.15.1.19

Article  Google Scholar 

Dhanda S, Gupta S, Halder A et al (2018) Systemic inflammation without gliosis mediates cognitive deficits through impaired BDNF expression in bile duct ligation model of hepatic encephalopathy. Brain Behav Immun 70:214–232. https://doi.org/10.1016/j.bbi.2018.03.002

Article  PubMed  CAS  Google Scholar 

Miski SF, Ahmad MAAAS, Esmat A (2021) Effect of Agmatine on Non-Alcoholic Fatty Liver Disease Induced by Type 2 Diabetes in Rats. J Pharm Res Int 127–134

El-Sherbeeny NA, Nader MA, Attia GM, Ateyya H (2016) Agmatine protects rat liver from nicotine-induced hepatic damage via antioxidative, antiapoptotic, and antifibrotic pathways. Naunyn-Schmiedebergs Arch Pharmacol 389:1341–1351. https://doi.org/10.1007/s00210-016-1284-9

Article  PubMed  CAS  Google Scholar 

Elsherbini DMA, Ghoneim FM, El-Mancy EM et al (2022) Astrocytes profiling in acute hepatic encephalopathy: possible enrolling of glial fibrillary acidic protein, tumor necrosis factor-alpha, inwardly rectifying potassium channel (Kir 4.1) and aquaporin-4 in rat cerebral cortex. Front Cell Neurosci. https://doi.org/10.3389/fncel.2022.896172

Article  PubMed  PubMed Central  Google Scholar 

Felipo V (2013) Hepatic encephalopathy: effects of liver failure on brain function. Nat Rev Neurosci 14:851–858. https://doi.org/10.1038/nrn3587

Article  PubMed  CAS  Google Scholar 

Ganjalikhan-hakemi S, Asadi-Shekaari M, Pourjafari F et al (2023) Agmatine improves liver function, balance performance, and neuronal damage in a hepatic encephalopathy induced by bile duct ligation. Brain Behav 13(9):e3124. https://doi.org/10.1002/brb3.3124

Article  PubMed  PubMed Central  CAS  Google Scholar 

Han Z, Li Y, Yang B et al (2020) Agmatine attenuates liver ischemia reperfusion injury by activating Wnt/β-catenin signaling in mice. Transplantation 104(9):1906–1916. https://doi.org/10.1097/tp.0000000000003161

Article  PubMed  CAS  Google Scholar 

Haratizadeh S, Ranjbar M, Basiri M, Nozari M (2023) Astrocyte responses to postnatal erythropoietin and nano-erythropoietin treatments in a valproic acid-induced animal model of autism. J Chem Neuroanat 130:1–8

Article  Google Scholar 

Jayakumar AR, Rama Rao KV, Norenberg MD (2015) Neuroinflammation in hepatic encephalopathy: mechanistic aspects. J Clin Exp Hepatol 5:S21–S28. https://doi.org/10.1016/j.jceh.2014.07.006

Article  PubMed  Google Scholar 

Kang S, Kim CH, Jung H et al (2017) Agmatine ameliorates type 2 diabetes induced-Alzheimer’s disease-like alterations in high-fat diet-fed mice via reactivation of blunted insulin signalling. Neuropharmacology 113:467–479. https://doi.org/10.1016/j.neuropharm.2016.10.029

Article  PubMed  CAS  Google Scholar 

Kawai H, Ishibashi T, Kudo N et al (2012) Behavioral and biochemical characterization of rats treated chronically with thioacetamide: proposal of an animal model for hepatic encephalopathy associated with cirrhosis. J Toxicol Sci 37:1165–1175. https://doi.org/10.2131/jts.37.1165

Article  PubMed  CAS  Google Scholar 

Kim JH, Kim JY, Jung JY et al (2017) Endogenous agmatine induced by ischemic preconditioning regulates ischemic tolerance following cerebral ischemia. Exp Neurobiol 26:380

Article  PubMed  PubMed Central  Google Scholar 

Kim JM, Lee JE, Cheon SY et al (2016) The anti-inflammatory effects of agmatine on transient focal cerebral ischemia in diabetic rats. J Neurosurg Anesthesiol 28:203–213. https://doi.org/10.1097/ANA.0000000000000195

Article  PubMed  Google Scholar 

Kotagale NR, Taksande BG, Wadhwani PJ et al (2012) Psychopharmacological study of agmatine in behavioral tests of schizophrenia in rodents. Pharmacol Biochem Behav 100:398–403

Article  PubMed  CAS  Google Scholar 

Kumari SA, Madhusudhanachary P, Patlolla AK, Tchounwou PB (2016) Hepatotoxicity and ultra structural changes in Wistar rats treated with Al2O3 nanomaterials. Trends Cell Mol Biol 11:77–88

PubMed  PubMed Central  Google Scholar 

Li YF, Gong ZH, Cao JB et al (2003) Antidepressant-like effect of agmatine and its possible mechanism. Eur J Pharmacol 469:81–88. https://doi.org/10.1016/S0014-2999(03)01735-7

Article  PubMed  CAS  Google Scholar 

Linnerbauer M, Rothhammer V (2020) Protective functions of reactive astrocytes following central nervous system insult. Front Immunol 11:573256

Article  PubMed  PubMed Central  CAS  Google Scholar 

Manzhalii E, Virchenko O, Falalyeyeva T et al (2019) Hepatic encephalopathy aggravated by systemic inflammation. Dig Dis 37:509–517. https://doi.org/10.1159/000500717

Article  PubMed  Google Scholar 

Medina J, Moreno-Otero R (2005) Pathophysiological basis for antioxidant therapy in chronic liver disease. Drugs 65:2445–2461. https://doi.org/10.2165/00003495-200565170-00003

Article  PubMed  CAS  Google Scholar 

Moretti M, Matheus FC, De Oliveira PA et al (2014) Role of agmatine in neurodegenerative diseases and epilepsy. Front Biosci - Elit 6:341–359. https://doi.org/10.2741/e710

Article  Google Scholar 

Mousa N, Abdel-Razik A, Zaher A et al (2016) The role of antioxidants and zinc in minimal hepatic encephalopathy: a randomized trial. Therap Adv Gastroenterol 9:684. https://doi.org/10.1177/1756283X16645049

Article  PubMed  PubMed Central  Google Scholar 

O’Connor JE, Costell M (1990) New roles of carnitine metabolism in ammonia cytotoxicity. In: Advances in Experimental Medicine and Biology. pp 183–195

Norenberg MD, Rama Rao KV, Jayakumar AR (2005) Mechanisms of ammonia-induced astrocyte swelling. Metab Brain Dis 20:303–318. https://doi.org/10.1007/s11011-005-7911-7

Article  PubMed  CAS  Google Scholar 

Ochoa-Sanchez R, Oliveira MM, Tremblay M et al (2021) Genetically engineered E. coli Nissle attenuates hyperammonemia and prevents memory impairment in bile-duct ligated rats. Liver Int 41:1020–1032.

Comments (0)

No login
gif