Ahmadi S, Khaledi S (2020) Anxiety in rats with bile duct ligation is associated with activation of JNK3 mitogen-activated protein kinase in the hippocampus. Metab Brain Dis 35:579–588. https://doi.org/10.1007/s11011-020-00542-1
Article PubMed CAS Google Scholar
Ahmadi S, Poureidi M, Rostamzadeh J (2015) Hepatic encephalopathy induces site-specific changes in gene expression of GluN1 subunit of NMDA receptor in rat brain. Metab Brain Dis 30:1035–1041. https://doi.org/10.1007/s11011-015-9669-x
Article PubMed CAS Google Scholar
Ahmed N, Aljuhani N, Al-Hujaili HS et al (2018) Agmatine protects against sodium valproate–induced hepatic injury in mice via modulation of nuclear factor-κB/inducible nitric oxide synthetase pathway. J Biochem Mol Toxicol 32:1–6. https://doi.org/10.1002/jbt.22227
Ara C, Kirimlioglu H, Karabulut AB et al (2005) Protective effect of resveratrol against oxidative stress in cholestasis. J Surg Res 127:112–117. https://doi.org/10.1016/j.jss.2005.01.024
Article PubMed CAS Google Scholar
Bosoi CR, Rose CF (2013) Oxidative stress: A systemic factor implicated in the pathogenesis of hepatic encephalopathy. Metab Brain Dis 28:175–178. https://doi.org/10.1007/S11011-012-9351-5/FIGURES/2
Article PubMed CAS Google Scholar
Botros M, Sikaris KA (2013) The de ritis ratio: the test of time. Clin Biochem Rev 34:117–130
PubMed PubMed Central Google Scholar
Butterworth RF (2011) Hepatic encephalopathy: a central neuroinflammatory disorder? Hepatology 53:1372–1376
Cheng X, Wang J, Sun X et al (2019) Morphological and functional alterations of astrocytes responding to traumatic brain injury. J Integr Neurosci 18:203–215. https://doi.org/10.31083/J.JIN.2019.02.110/1757-448X-18-2-203/IMG_5.JPG
Cho I, Koo BN, Kam EH et al (2020) Bile duct ligation of C57BL/6 mice as a model of hepatic encephalopathy. Anesth Pain Med 15(1):19–27. https://doi.org/10.17085/apm.2020.15.1.19
Dhanda S, Gupta S, Halder A et al (2018) Systemic inflammation without gliosis mediates cognitive deficits through impaired BDNF expression in bile duct ligation model of hepatic encephalopathy. Brain Behav Immun 70:214–232. https://doi.org/10.1016/j.bbi.2018.03.002
Article PubMed CAS Google Scholar
Miski SF, Ahmad MAAAS, Esmat A (2021) Effect of Agmatine on Non-Alcoholic Fatty Liver Disease Induced by Type 2 Diabetes in Rats. J Pharm Res Int 127–134
El-Sherbeeny NA, Nader MA, Attia GM, Ateyya H (2016) Agmatine protects rat liver from nicotine-induced hepatic damage via antioxidative, antiapoptotic, and antifibrotic pathways. Naunyn-Schmiedebergs Arch Pharmacol 389:1341–1351. https://doi.org/10.1007/s00210-016-1284-9
Article PubMed CAS Google Scholar
Elsherbini DMA, Ghoneim FM, El-Mancy EM et al (2022) Astrocytes profiling in acute hepatic encephalopathy: possible enrolling of glial fibrillary acidic protein, tumor necrosis factor-alpha, inwardly rectifying potassium channel (Kir 4.1) and aquaporin-4 in rat cerebral cortex. Front Cell Neurosci. https://doi.org/10.3389/fncel.2022.896172
Article PubMed PubMed Central Google Scholar
Felipo V (2013) Hepatic encephalopathy: effects of liver failure on brain function. Nat Rev Neurosci 14:851–858. https://doi.org/10.1038/nrn3587
Article PubMed CAS Google Scholar
Ganjalikhan-hakemi S, Asadi-Shekaari M, Pourjafari F et al (2023) Agmatine improves liver function, balance performance, and neuronal damage in a hepatic encephalopathy induced by bile duct ligation. Brain Behav 13(9):e3124. https://doi.org/10.1002/brb3.3124
Article PubMed PubMed Central CAS Google Scholar
Han Z, Li Y, Yang B et al (2020) Agmatine attenuates liver ischemia reperfusion injury by activating Wnt/β-catenin signaling in mice. Transplantation 104(9):1906–1916. https://doi.org/10.1097/tp.0000000000003161
Article PubMed CAS Google Scholar
Haratizadeh S, Ranjbar M, Basiri M, Nozari M (2023) Astrocyte responses to postnatal erythropoietin and nano-erythropoietin treatments in a valproic acid-induced animal model of autism. J Chem Neuroanat 130:1–8
Jayakumar AR, Rama Rao KV, Norenberg MD (2015) Neuroinflammation in hepatic encephalopathy: mechanistic aspects. J Clin Exp Hepatol 5:S21–S28. https://doi.org/10.1016/j.jceh.2014.07.006
Kang S, Kim CH, Jung H et al (2017) Agmatine ameliorates type 2 diabetes induced-Alzheimer’s disease-like alterations in high-fat diet-fed mice via reactivation of blunted insulin signalling. Neuropharmacology 113:467–479. https://doi.org/10.1016/j.neuropharm.2016.10.029
Article PubMed CAS Google Scholar
Kawai H, Ishibashi T, Kudo N et al (2012) Behavioral and biochemical characterization of rats treated chronically with thioacetamide: proposal of an animal model for hepatic encephalopathy associated with cirrhosis. J Toxicol Sci 37:1165–1175. https://doi.org/10.2131/jts.37.1165
Article PubMed CAS Google Scholar
Kim JH, Kim JY, Jung JY et al (2017) Endogenous agmatine induced by ischemic preconditioning regulates ischemic tolerance following cerebral ischemia. Exp Neurobiol 26:380
Article PubMed PubMed Central Google Scholar
Kim JM, Lee JE, Cheon SY et al (2016) The anti-inflammatory effects of agmatine on transient focal cerebral ischemia in diabetic rats. J Neurosurg Anesthesiol 28:203–213. https://doi.org/10.1097/ANA.0000000000000195
Kotagale NR, Taksande BG, Wadhwani PJ et al (2012) Psychopharmacological study of agmatine in behavioral tests of schizophrenia in rodents. Pharmacol Biochem Behav 100:398–403
Article PubMed CAS Google Scholar
Kumari SA, Madhusudhanachary P, Patlolla AK, Tchounwou PB (2016) Hepatotoxicity and ultra structural changes in Wistar rats treated with Al2O3 nanomaterials. Trends Cell Mol Biol 11:77–88
PubMed PubMed Central Google Scholar
Li YF, Gong ZH, Cao JB et al (2003) Antidepressant-like effect of agmatine and its possible mechanism. Eur J Pharmacol 469:81–88. https://doi.org/10.1016/S0014-2999(03)01735-7
Article PubMed CAS Google Scholar
Linnerbauer M, Rothhammer V (2020) Protective functions of reactive astrocytes following central nervous system insult. Front Immunol 11:573256
Article PubMed PubMed Central CAS Google Scholar
Manzhalii E, Virchenko O, Falalyeyeva T et al (2019) Hepatic encephalopathy aggravated by systemic inflammation. Dig Dis 37:509–517. https://doi.org/10.1159/000500717
Medina J, Moreno-Otero R (2005) Pathophysiological basis for antioxidant therapy in chronic liver disease. Drugs 65:2445–2461. https://doi.org/10.2165/00003495-200565170-00003
Article PubMed CAS Google Scholar
Moretti M, Matheus FC, De Oliveira PA et al (2014) Role of agmatine in neurodegenerative diseases and epilepsy. Front Biosci - Elit 6:341–359. https://doi.org/10.2741/e710
Mousa N, Abdel-Razik A, Zaher A et al (2016) The role of antioxidants and zinc in minimal hepatic encephalopathy: a randomized trial. Therap Adv Gastroenterol 9:684. https://doi.org/10.1177/1756283X16645049
Article PubMed PubMed Central Google Scholar
O’Connor JE, Costell M (1990) New roles of carnitine metabolism in ammonia cytotoxicity. In: Advances in Experimental Medicine and Biology. pp 183–195
Norenberg MD, Rama Rao KV, Jayakumar AR (2005) Mechanisms of ammonia-induced astrocyte swelling. Metab Brain Dis 20:303–318. https://doi.org/10.1007/s11011-005-7911-7
Article PubMed CAS Google Scholar
Ochoa-Sanchez R, Oliveira MM, Tremblay M et al (2021) Genetically engineered E. coli Nissle attenuates hyperammonemia and prevents memory impairment in bile-duct ligated rats. Liver Int 41:1020–1032.
Comments (0)