Aguzzi A, O’connor T (2010) Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 9(3):237
Article CAS PubMed Google Scholar
Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S et al (2010) Structural conversion of neurotoxic amyloid-β1–42 oligomers to fibrils. Nat Struct Mol Biol 17(5):561
Article CAS PubMed PubMed Central Google Scholar
Aqili Khorasani M (1992) Collection of drugs (materia media). Engelab–e–Eslami Publishing and Educational organization, Tehran
Ma C, Hong F, Yang S (2022) Amyloidosis in Alzheimer’s disease: pathogeny, etiology, and related therapeutic directions. Molecules 27(4):1210
Article CAS PubMed PubMed Central Google Scholar
Wegmann S, Biernat J, Mandelkow E (2021) A current view on Tau protein phosphorylation in Alzheimer’s disease. Curr Opin Neurobiol 69:131–138
Article CAS PubMed Google Scholar
Ferreira-Vieira H, Guimaraes TM, Silva IR, F., Ribeiro M, F (2016) Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol 14(1):101–115
Article CAS PubMed PubMed Central Google Scholar
Huang WJ, Zhang XIA, Chen WW (2016) Role of oxidative stress in Alzheimer’s disease. Biomed Rep 4(5):519–522
Article CAS PubMed PubMed Central Google Scholar
de la Monte SM, Tong M (2014) Brain metabolic dysfunction at the core of Alzheimer’s disease. Biochem Pharmacol 88(4):548–559
Murray IV, Proza JF, Sohrabji F, Lawler JM (2011) Vascular and metabolic dysfunction in Alzheimer’s disease: a review. Exp Biol Med 236(7):772–782
Brand AL, Lawler PE, Bollinger JG, Li Y, Schindler SE, Li M, Bateman RJ (2022) The performance of plasma amyloid beta measurements in identifying amyloid plaques in Alzheimer’s disease: a literature review. Alzheimers Res Ther 14(1):195
Article CAS PubMed PubMed Central Google Scholar
Zhang Y, Chen H, Li R, Sterling K, Song W (2023) Amyloid β-based therapy for alzheimer’s disease: challenges, successes and future. Signal Transduct Target Ther 8(1):248. https://doi.org/10.1038/s41392-023-01484-7
Article CAS PubMed PubMed Central Google Scholar
Uddin MS, Kabir MT, Rahman MS, Behl T, Jeandet P, Ashraf GM, Najda A, Bin-Jumah MN, El-Seedi HR, Abdel-Daim MM (2020) Revisiting the amyloid cascade hypothesis: from anti-Aβ therapeutics to auspicious new ways for Alzheimer’s disease. Int J Mol Sci 21(16):5858. https://doi.org/10.3390/ijms21165858
Article CAS PubMed PubMed Central Google Scholar
Orobets KS, Karamyshev AL (2023) Amyloid precursor protein and Alzheimer’s disease. Int J Mol Sci 24(19):14794
Article CAS PubMed PubMed Central Google Scholar
Kim CK, Lee YR, Ong L, Gold M, Kalali A, Sarkar J (2022) Alzheimer’s disease: key insights from two decades of clinical trial failures. J Alzheimers Dis 87(1):83–100. https://doi.org/10.3233/JAD-215699
Article PubMed PubMed Central Google Scholar
Caselli RJ, Langlais BT, Dueck AC, Chen Y, Su Y, Locke DEC, Woodruff BK, Reiman EM (2020) Neuropsychological decline up to 20 years before incident mild cognitive impairment. Alzheimers Dement 16(3):512–523. https://doi.org/10.1016/j.jalz.2019.09.085
Jansen WJ, Ossenkoppele R, Knol DL, Tijms BM, Scheltens P, Verhey FR, Visser PJ, Amyloid Biomarker Study Group, Aalten P, Aarsland D, Alcolea D, Alexander M, Almdahl IS, Arnold SE, Baldeiras I, Barthel H, van Berckel BN, Bibeau K, Blennow K, Brooks DJ, Zetterberg H (2015) Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA 313(19):1924–1938. https://doi.org/10.1001/jama.2015.4668
Article PubMed PubMed Central Google Scholar
Vickers JC, Mitew S, Woodhouse A, Fernandez-Martos CM, Kirkcaldie MT, Canty AJ, McCormack GH, King AE (2016) Defining the earliest pathological changes of Alzheimer’s disease. Curr Alzheimer Res 13(3):281–287. https://doi.org/10.2174/1567205013666151218150322
Article CAS PubMed PubMed Central Google Scholar
Kanubaddi KR, Yang SH, Wu LW, Lee CH, Weng CF (2018) Nanoparticle-conjugated nutraceuticals exert prospectively palliative of amyloid aggregation. Int J Nanomed 13:8473–8485. https://doi.org/10.2147/IJN.S179484
Román GC, Jackson RE, Gadhia R, Román AN, Reis J (2019) Mediterranean diet: the role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, Cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease. Rev Neurol 175(10):724–741. https://doi.org/10.1016/j.neurol.2019.08.005
Rigacci S, Stefani M (2015) Nutraceuticals and amyloid neurodegenerative diseases: a focus on natural phenols. Expert Rev Neurother 15(1):41–52. https://doi.org/10.1586/14737175.2015.986101
Article CAS PubMed Google Scholar
Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3(3):186–191
Castellani RJ, Perry G (2012) Pathogenesis and disease-modifying therapy in Alzheimer’s disease: the flat line of progress. Arch Med Res. https://doi.org/10.1016/j.arcmed.2012.09.009
Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366
Article CAS PubMed Google Scholar
Dahlgren KN, Manelli AM, Stine WB, Baker LK, Krafft GA, LaDu MJ (2002) Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability. J Biol Chem 277(35):32046–32053
Article CAS PubMed Google Scholar
Duke JA (1997) The green pharmacy: New discoveries in herbal remedies for common diseases and conditions from the world’s foremost authority on healing herbs. Rodale
Fa M, Orozco IJ, Francis YI, Saeed F, Gong Y, Arancio O (2010) Preparation of oligomeric β-amyloid1-42 and induction of synaptic plasticity impairment on hippocampal slices. J Visualized Experiments: JoVE (41)
Gülçin İ (2006) Antioxidant activity of caffeic acid (3, 4-dihydroxycinnamic acid). Toxicology 217(2–3):213–220
Ham A-R, Shin J-H, Oh K-b, Lee S-J, Nam K-W, Koo U et al (2011) Neuroprotective effect of the n-hexane extracts of Laurus nobilis L. in models of parkinsons disease. Biomol Ther 19(1):118–125
Brinza I, Boiangiu RS, Hancianu M, Cioanca O, Erdogan Orhan I, Hritcu L (2021) Bay leaf (Laurus nobilis L.) incense improved Scopolamine-induced amnesic rats by restoring cholinergic dysfunction and brain antioxidant status. Antioxidants 10(2):259. https://doi.org/10.3390/antiox10020259
Article CAS PubMed PubMed Central Google Scholar
Falade AO, Omolaiye GI, Adewole KE, Agunloye OM, Ishola AA, Okaiyeto K, Oboh G, Oguntibeju OO (2022) Aqueous extracts of bay leaf (Laurus nobilis) and rosemary (Rosmarinus officinalis) inhibit iron-induced lipid peroxidation and key-enzymes implicated in Alzheimer’s disease in rat brain-in vitro. Am J Biochem Biotechnol 18(1):9–22. https://doi.org/10.3844/ajbbsp.2022.9.22
Algabri SO, Doro BM, Abadi AM, Shiba MA, Salem AH Bay leaves have antimicrobial and antioxidant activities. Journal of Pathogen Research, 1(1), 3., Polovka M, Suhaj M (2018) (2010). Detection of caraway and bay leaves irradiation based on their extracts’ antioxidant properties evaluation. Food chemistry, 119(1):391–401
Polovka M, Suhaj M (2010) Detection of caraway and bay leaves irradiation based on their extracts’ antioxidant properties evaluation. Food Chem 119(1):391–401
Ishtiaque S, Naz S, Soomro N, Khan K, Siddiqui R (2015) Antioxidant activity and total phenolics content of extracts from Murraya koenigii (curry leaves), Laurus nobilis (bay leaves), and Camellia sinensis (tea). Quaid-E-Awam Univ Res J Eng Sci Technol 14(2):20–25
Comments (0)