Bay leaves: the neuroprotective dietary spice inhibition of amyloid-like aggregation

Aguzzi A, O’connor T (2010) Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 9(3):237

Article  CAS  PubMed  Google Scholar 

Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S et al (2010) Structural conversion of neurotoxic amyloid-β1–42 oligomers to fibrils. Nat Struct Mol Biol 17(5):561

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aqili Khorasani M (1992) Collection of drugs (materia media). Engelab–e–Eslami Publishing and Educational organization, Tehran

Google Scholar 

Ma C, Hong F, Yang S (2022) Amyloidosis in Alzheimer’s disease: pathogeny, etiology, and related therapeutic directions. Molecules 27(4):1210

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wegmann S, Biernat J, Mandelkow E (2021) A current view on Tau protein phosphorylation in Alzheimer’s disease. Curr Opin Neurobiol 69:131–138

Article  CAS  PubMed  Google Scholar 

Ferreira-Vieira H, Guimaraes TM, Silva IR, F., Ribeiro M, F (2016) Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol 14(1):101–115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang WJ, Zhang XIA, Chen WW (2016) Role of oxidative stress in Alzheimer’s disease. Biomed Rep 4(5):519–522

Article  CAS  PubMed  PubMed Central  Google Scholar 

de la Monte SM, Tong M (2014) Brain metabolic dysfunction at the core of Alzheimer’s disease. Biochem Pharmacol 88(4):548–559

Article  PubMed  Google Scholar 

Murray IV, Proza JF, Sohrabji F, Lawler JM (2011) Vascular and metabolic dysfunction in Alzheimer’s disease: a review. Exp Biol Med 236(7):772–782

Article  CAS  Google Scholar 

Brand AL, Lawler PE, Bollinger JG, Li Y, Schindler SE, Li M, Bateman RJ (2022) The performance of plasma amyloid beta measurements in identifying amyloid plaques in Alzheimer’s disease: a literature review. Alzheimers Res Ther 14(1):195

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Chen H, Li R, Sterling K, Song W (2023) Amyloid β-based therapy for alzheimer’s disease: challenges, successes and future. Signal Transduct Target Ther 8(1):248. https://doi.org/10.1038/s41392-023-01484-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uddin MS, Kabir MT, Rahman MS, Behl T, Jeandet P, Ashraf GM, Najda A, Bin-Jumah MN, El-Seedi HR, Abdel-Daim MM (2020) Revisiting the amyloid cascade hypothesis: from anti-Aβ therapeutics to auspicious new ways for Alzheimer’s disease. Int J Mol Sci 21(16):5858. https://doi.org/10.3390/ijms21165858

Article  CAS  PubMed  PubMed Central  Google Scholar 

Orobets KS, Karamyshev AL (2023) Amyloid precursor protein and Alzheimer’s disease. Int J Mol Sci 24(19):14794

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim CK, Lee YR, Ong L, Gold M, Kalali A, Sarkar J (2022) Alzheimer’s disease: key insights from two decades of clinical trial failures. J Alzheimers Dis 87(1):83–100. https://doi.org/10.3233/JAD-215699

Article  PubMed  PubMed Central  Google Scholar 

Caselli RJ, Langlais BT, Dueck AC, Chen Y, Su Y, Locke DEC, Woodruff BK, Reiman EM (2020) Neuropsychological decline up to 20 years before incident mild cognitive impairment. Alzheimers Dement 16(3):512–523. https://doi.org/10.1016/j.jalz.2019.09.085

Article  PubMed  Google Scholar 

Jansen WJ, Ossenkoppele R, Knol DL, Tijms BM, Scheltens P, Verhey FR, Visser PJ, Amyloid Biomarker Study Group, Aalten P, Aarsland D, Alcolea D, Alexander M, Almdahl IS, Arnold SE, Baldeiras I, Barthel H, van Berckel BN, Bibeau K, Blennow K, Brooks DJ, Zetterberg H (2015) Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA 313(19):1924–1938. https://doi.org/10.1001/jama.2015.4668

Article  PubMed  PubMed Central  Google Scholar 

Vickers JC, Mitew S, Woodhouse A, Fernandez-Martos CM, Kirkcaldie MT, Canty AJ, McCormack GH, King AE (2016) Defining the earliest pathological changes of Alzheimer’s disease. Curr Alzheimer Res 13(3):281–287. https://doi.org/10.2174/1567205013666151218150322

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanubaddi KR, Yang SH, Wu LW, Lee CH, Weng CF (2018) Nanoparticle-conjugated nutraceuticals exert prospectively palliative of amyloid aggregation. Int J Nanomed 13:8473–8485. https://doi.org/10.2147/IJN.S179484

Article  CAS  Google Scholar 

Román GC, Jackson RE, Gadhia R, Román AN, Reis J (2019) Mediterranean diet: the role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, Cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease. Rev Neurol 175(10):724–741. https://doi.org/10.1016/j.neurol.2019.08.005

Article  PubMed  Google Scholar 

Rigacci S, Stefani M (2015) Nutraceuticals and amyloid neurodegenerative diseases: a focus on natural phenols. Expert Rev Neurother 15(1):41–52. https://doi.org/10.1586/14737175.2015.986101

Article  CAS  PubMed  Google Scholar 

Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3(3):186–191

Article  PubMed  Google Scholar 

Castellani RJ, Perry G (2012) Pathogenesis and disease-modifying therapy in Alzheimer’s disease: the flat line of progress. Arch Med Res. https://doi.org/10.1016/j.arcmed.2012.09.009

Article  PubMed  Google Scholar 

Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

Article  CAS  PubMed  Google Scholar 

Dahlgren KN, Manelli AM, Stine WB, Baker LK, Krafft GA, LaDu MJ (2002) Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability. J Biol Chem 277(35):32046–32053

Article  CAS  PubMed  Google Scholar 

Duke JA (1997) The green pharmacy: New discoveries in herbal remedies for common diseases and conditions from the world’s foremost authority on healing herbs. Rodale

Fa M, Orozco IJ, Francis YI, Saeed F, Gong Y, Arancio O (2010) Preparation of oligomeric β-amyloid1-42 and induction of synaptic plasticity impairment on hippocampal slices. J Visualized Experiments: JoVE (41)

Gülçin İ (2006) Antioxidant activity of caffeic acid (3, 4-dihydroxycinnamic acid). Toxicology 217(2–3):213–220

Article  PubMed  Google Scholar 

Ham A-R, Shin J-H, Oh K-b, Lee S-J, Nam K-W, Koo U et al (2011) Neuroprotective effect of the n-hexane extracts of Laurus nobilis L. in models of parkinsons disease. Biomol Ther 19(1):118–125

Article  Google Scholar 

Brinza I, Boiangiu RS, Hancianu M, Cioanca O, Erdogan Orhan I, Hritcu L (2021) Bay leaf (Laurus nobilis L.) incense improved Scopolamine-induced amnesic rats by restoring cholinergic dysfunction and brain antioxidant status. Antioxidants 10(2):259. https://doi.org/10.3390/antiox10020259

Article  CAS  PubMed  PubMed Central  Google Scholar 

Falade AO, Omolaiye GI, Adewole KE, Agunloye OM, Ishola AA, Okaiyeto K, Oboh G, Oguntibeju OO (2022) Aqueous extracts of bay leaf (Laurus nobilis) and rosemary (Rosmarinus officinalis) inhibit iron-induced lipid peroxidation and key-enzymes implicated in Alzheimer’s disease in rat brain-in vitro. Am J Biochem Biotechnol 18(1):9–22. https://doi.org/10.3844/ajbbsp.2022.9.22

Article  CAS  Google Scholar 

Algabri SO, Doro BM, Abadi AM, Shiba MA, Salem AH Bay leaves have antimicrobial and antioxidant activities. Journal of Pathogen Research, 1(1), 3., Polovka M, Suhaj M (2018) (2010). Detection of caraway and bay leaves irradiation based on their extracts’ antioxidant properties evaluation. Food chemistry, 119(1):391–401

Polovka M, Suhaj M (2010) Detection of caraway and bay leaves irradiation based on their extracts’ antioxidant properties evaluation. Food Chem 119(1):391–401

Article  CAS  Google Scholar 

Ishtiaque S, Naz S, Soomro N, Khan K, Siddiqui R (2015) Antioxidant activity and total phenolics content of extracts from Murraya koenigii (curry leaves), Laurus nobilis (bay leaves), and Camellia sinensis (tea). Quaid-E-Awam Univ Res J Eng Sci Technol 14(2):20–25

Comments (0)

No login
gif