McElhinney DB, Hennesen JT (2013) The Melody® valve and Ensemble® delivery system for transcatheter pulmonary valve replacement. Ann N Y Acad Sci 1291(1):77–85. https://doi.org/10.1111/nyas.12194
Article CAS PubMed PubMed Central Google Scholar
Capodanno D, Petronio AS, Prendergast B et al (2017) Standardized definitions of structural deterioration and valve failure in assessing long-term durability of transcatheter and surgical aortic bioprosthetic valves: a consensus statement from the European Association of Percutaneous Cardiovascular Interventions (EAPCI) endorsed by the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur J Cardiothorac Surg 52(3):408–417. https://doi.org/10.1093/ejcts/ezx244
Saleeb SF, Newburger JW, Geva T et al (2014) Accelerated degeneration of a bovine pericardial bioprosthetic aortic valve in children and young adults. Circulation 130(1):51–60. https://doi.org/10.1161/CIRCULATIONAHA.114.009835
Bourguignon T, El Khoury R, Candolfi P et al (2015) Very long-term outcomes of the Carpentier-Edwards Perimount aortic valve in patients aged 60 or younger. Ann Thorac Surg 100(3):853–859. https://doi.org/10.1016/j.athoracsur.2015.03.105
Sanders SP, Levy RJ, Freed MD, Norwood WI, Castaneda AR (1980) Use of Hancock porcine xenografts in children and adolescents. Am J Cardiol 46(3):429–438. https://doi.org/10.1016/0002-9149(80)90012-0
Article CAS PubMed Google Scholar
Caldarone CA, McCrindle BW, Van Arsdell GS et al (2000) Independent factors associated with longevity of prosthetic pulmonary valves and valved conduits. J Thorac Cardiovasc Surg 120(6):1022–1031. https://doi.org/10.1067/mtc.2000.110684
Article CAS PubMed Google Scholar
Fiore AC, Ruzmetov M, Huynh D et al (2010) Comparison of bovine jugular vein with pulmonary homograft conduits in children less than 2 years of age. Eur J Cardiothorac Surg 38(3):318–325. https://doi.org/10.1016/j.ejcts.2010.01.063
Urso S, Rega F, Meuris B et al (2011) The Contegra conduit in the right ventricular outflow tract is an independent risk factor for graft replacement. Eur J Cardiothorac Surg 40(3):603–609. https://doi.org/10.1016/j.ejcts.2010.11.081
Ugaki S, Rutledge J, Al Aklabi M, Ross DB, Adatia I, Rebeyka IM (2015) An increased incidence of conduit endocarditis in patients receiving bovine jugular vein grafts compared to cryopreserved homograft for right ventricular outflow reconstruction. Ann Thorac Surg 99(1):140–146. https://doi.org/10.1016/j.athoracsur.2014.08.034
Lewis MJ, Malm T, Hallbergson A et al (2023) Long-term follow-up of right ventricle to pulmonary artery biologic valved conduits used in pediatric congenital heart surgery. Pediatr Cardiol 44(1):102–115. https://doi.org/10.1007/s00246-022-02956-3
Vitanova K, Cleuziou J, Hörer J et al (2014) Which type of conduit to choose for right ventricular outflow tract reconstruction in patients below 1 year of age?†. Eur J Cardiothorac Surg 46(6):961–966. https://doi.org/10.1093/ejcts/ezu080
Jones TK, McElhinney DB, Vincent JA et al (2022) Long-term outcomes after Melody transcatheter pulmonary valve replacement in the US investigational device exemption trial. Circ Cardiovasc Interv 15(1):e010852. https://doi.org/10.1161/CIRCINTERVENTIONS.121.010852
Feng W, Yang X, Liu Y, Fan Y (2017) An in vitro feasibility study of the influence of configurations and leaflet thickness on the hydrodynamics of deformed transcatheter aortic valve. Artif Organs 41(8):735–743. https://doi.org/10.1111/aor.12833
Article CAS PubMed Google Scholar
Lee A, Farajikhah S, Crago M et al (2023) From scan to simulation-a novel workflow for developing bioinspired heart valves. J Biomech Eng 145(5):055001. https://doi.org/10.1115/1.4056353
Kovarovic B, Helbock R, Baylous K, Rotman OM, Slepian MJ, Bluestein D (2022) Visions of TAVR future: development and optimization of a second generation novel polymeric TAVR. J Biomech Eng 144(6):061008. https://doi.org/10.1115/1.4054149
Article PubMed PubMed Central Google Scholar
Frasca A, Xue Y, Kossar AP et al (2020) Glycation and serum albumin infiltration contribute to the structural degeneration of bioprosthetic heart valves. JACC Basic Transl Sci 5(8):755–766. https://doi.org/10.1016/j.jacbts.2020.06.008
Article PubMed PubMed Central Google Scholar
Xue Y, Kossar AP, Abramov A et al (2023) Age-related enhanced degeneration of bioprosthetic valves due to leaflet calcification, tissue crosslinking, and structural changes. Cardiovasc Res 119(1):302–315. https://doi.org/10.1093/cvr/cvac002
Article CAS PubMed Google Scholar
Zakharchenko A, Xue Y, Keeney S et al (2022) Poly-2-methyl-2-oxazoline-modified bioprosthetic heart valve leaflets have enhanced biocompatibility and resist structural degeneration. Proc Natl Acad Sci U S A 119(6):e2120694119. https://doi.org/10.1073/pnas.2120694119
Article PubMed PubMed Central Google Scholar
Zhang N, Pompe T, Amin I, Luxenhofer R, Werner C, Jordan R (2012) Tailored poly(2-oxazoline) polymer brushes to control protein adsorption and cell adhesion. Macromol Biosci 12(7):926–936. https://doi.org/10.1002/mabi.201200026
Article CAS PubMed Google Scholar
Lorson T, Lübtow MM, Wegener E et al (2018) Poly(2-oxazoline)s based biomaterials: a comprehensive and critical update. Biomaterials 178:204–280. https://doi.org/10.1016/j.biomaterials.2018.05.022
Article CAS PubMed Google Scholar
Viegas TX, Bentley MD, Harris JM et al (2011) Polyoxazoline: chemistry, properties, and applications in drug delivery. Bioconjug Chem 22(5):976–986. https://doi.org/10.1021/bc200049d
Article CAS PubMed Google Scholar
Abramov A, Xue Y, Zakharchenko A et al (2023) Bioprosthetic heart valve structural degeneration associated with metabolic syndrome: Mitigation with polyoxazoline modification. Proc Natl Acad Sci U S A 120(1):e2219054120. https://doi.org/10.1073/pnas.2219054120
Article CAS PubMed Google Scholar
Schoen FJ, Levy RJ, Nelson AC, Bernhard WF, Nashef A, Hawley M (1985) Onset and progression of experimental bioprosthetic heart valve calcification. Lab Invest 52(5):523–532
Patel ND, Levi DS, Cheatham JP, Qureshi SA, Shahanavaz S, Zahn EM (2022) Transcatheter pulmonary valve replacement: a review of current valve technologies. J Soc Cardiovasc Angiogr Interv 1(6):100452. https://doi.org/10.1016/j.jscai.2022.100452
Article PubMed PubMed Central Google Scholar
Wells WJ, Arroyo H Jr, Bremner RM, Wood J, Starnes VA (2002) Homograft conduit failure in infants is not due to somatic outgrowth. J Thorac Cardiovasc Surg 124(1):88–96. https://doi.org/10.1067/mtc.2002.121158
Dvir D, Bourguignon T, Otto CM et al (2018) Standardized definition of structural valve degeneration for surgical and transcatheter bioprosthetic aortic valves. Circulation 137(4):388–399. https://doi.org/10.1161/CIRCULATIONAHA.117.030729
Gong G, Seifter E, Lyman WD, Factor SM, Blau S, Frater RW (1993) Bioprosthetic cardiac valve degeneration: role of inflammatory and immune reactions. J Heart Valve Dis 2(6):684–693
Schoenhoff FS, Loup O, Gahl B et al (2011) The contegra bovine jugular vein graft versus the Shelhigh pulmonic porcine graft for reconstruction of the right ventricular outflow tract: a comparative study. J Thorac Cardiovasc Surg 141(3):654–661. https://doi.org/10.1016/j.jtcvs.2010.06.068
Herijgers P, Ozaki S, Verbeken E et al (2002) Valved jugular vein segments for right ventricular outflow tract reconstruction in young sheep. J Thorac Cardiovasc Surg 124(4):798–805. https://doi.org/10.1067/mtc.2002.121043
Comments (0)