Clinical and Experimental Studies of Structural Valve Degeneration of Bovine Jugular Vein Valves: Mitigation with Polyoxazoline Modification

McElhinney DB, Hennesen JT (2013) The Melody® valve and Ensemble® delivery system for transcatheter pulmonary valve replacement. Ann N Y Acad Sci 1291(1):77–85. https://doi.org/10.1111/nyas.12194

Article  CAS  PubMed  PubMed Central  Google Scholar 

Capodanno D, Petronio AS, Prendergast B et al (2017) Standardized definitions of structural deterioration and valve failure in assessing long-term durability of transcatheter and surgical aortic bioprosthetic valves: a consensus statement from the European Association of Percutaneous Cardiovascular Interventions (EAPCI) endorsed by the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur J Cardiothorac Surg 52(3):408–417. https://doi.org/10.1093/ejcts/ezx244

Article  PubMed  Google Scholar 

Saleeb SF, Newburger JW, Geva T et al (2014) Accelerated degeneration of a bovine pericardial bioprosthetic aortic valve in children and young adults. Circulation 130(1):51–60. https://doi.org/10.1161/CIRCULATIONAHA.114.009835

Article  PubMed  Google Scholar 

Bourguignon T, El Khoury R, Candolfi P et al (2015) Very long-term outcomes of the Carpentier-Edwards Perimount aortic valve in patients aged 60 or younger. Ann Thorac Surg 100(3):853–859. https://doi.org/10.1016/j.athoracsur.2015.03.105

Article  PubMed  Google Scholar 

Sanders SP, Levy RJ, Freed MD, Norwood WI, Castaneda AR (1980) Use of Hancock porcine xenografts in children and adolescents. Am J Cardiol 46(3):429–438. https://doi.org/10.1016/0002-9149(80)90012-0

Article  CAS  PubMed  Google Scholar 

Caldarone CA, McCrindle BW, Van Arsdell GS et al (2000) Independent factors associated with longevity of prosthetic pulmonary valves and valved conduits. J Thorac Cardiovasc Surg 120(6):1022–1031. https://doi.org/10.1067/mtc.2000.110684

Article  CAS  PubMed  Google Scholar 

Fiore AC, Ruzmetov M, Huynh D et al (2010) Comparison of bovine jugular vein with pulmonary homograft conduits in children less than 2 years of age. Eur J Cardiothorac Surg 38(3):318–325. https://doi.org/10.1016/j.ejcts.2010.01.063

Article  PubMed  Google Scholar 

Urso S, Rega F, Meuris B et al (2011) The Contegra conduit in the right ventricular outflow tract is an independent risk factor for graft replacement. Eur J Cardiothorac Surg 40(3):603–609. https://doi.org/10.1016/j.ejcts.2010.11.081

Article  PubMed  Google Scholar 

Ugaki S, Rutledge J, Al Aklabi M, Ross DB, Adatia I, Rebeyka IM (2015) An increased incidence of conduit endocarditis in patients receiving bovine jugular vein grafts compared to cryopreserved homograft for right ventricular outflow reconstruction. Ann Thorac Surg 99(1):140–146. https://doi.org/10.1016/j.athoracsur.2014.08.034

Article  PubMed  Google Scholar 

Lewis MJ, Malm T, Hallbergson A et al (2023) Long-term follow-up of right ventricle to pulmonary artery biologic valved conduits used in pediatric congenital heart surgery. Pediatr Cardiol 44(1):102–115. https://doi.org/10.1007/s00246-022-02956-3

Article  PubMed  Google Scholar 

Vitanova K, Cleuziou J, Hörer J et al (2014) Which type of conduit to choose for right ventricular outflow tract reconstruction in patients below 1 year of age?†. Eur J Cardiothorac Surg 46(6):961–966. https://doi.org/10.1093/ejcts/ezu080

Article  PubMed  Google Scholar 

Jones TK, McElhinney DB, Vincent JA et al (2022) Long-term outcomes after Melody transcatheter pulmonary valve replacement in the US investigational device exemption trial. Circ Cardiovasc Interv 15(1):e010852. https://doi.org/10.1161/CIRCINTERVENTIONS.121.010852

Article  PubMed  Google Scholar 

Feng W, Yang X, Liu Y, Fan Y (2017) An in vitro feasibility study of the influence of configurations and leaflet thickness on the hydrodynamics of deformed transcatheter aortic valve. Artif Organs 41(8):735–743. https://doi.org/10.1111/aor.12833

Article  CAS  PubMed  Google Scholar 

Lee A, Farajikhah S, Crago M et al (2023) From scan to simulation-a novel workflow for developing bioinspired heart valves. J Biomech Eng 145(5):055001. https://doi.org/10.1115/1.4056353

Article  PubMed  Google Scholar 

Kovarovic B, Helbock R, Baylous K, Rotman OM, Slepian MJ, Bluestein D (2022) Visions of TAVR future: development and optimization of a second generation novel polymeric TAVR. J Biomech Eng 144(6):061008. https://doi.org/10.1115/1.4054149

Article  PubMed  PubMed Central  Google Scholar 

Frasca A, Xue Y, Kossar AP et al (2020) Glycation and serum albumin infiltration contribute to the structural degeneration of bioprosthetic heart valves. JACC Basic Transl Sci 5(8):755–766. https://doi.org/10.1016/j.jacbts.2020.06.008

Article  PubMed  PubMed Central  Google Scholar 

Xue Y, Kossar AP, Abramov A et al (2023) Age-related enhanced degeneration of bioprosthetic valves due to leaflet calcification, tissue crosslinking, and structural changes. Cardiovasc Res 119(1):302–315. https://doi.org/10.1093/cvr/cvac002

Article  CAS  PubMed  Google Scholar 

Zakharchenko A, Xue Y, Keeney S et al (2022) Poly-2-methyl-2-oxazoline-modified bioprosthetic heart valve leaflets have enhanced biocompatibility and resist structural degeneration. Proc Natl Acad Sci U S A 119(6):e2120694119. https://doi.org/10.1073/pnas.2120694119

Article  PubMed  PubMed Central  Google Scholar 

Zhang N, Pompe T, Amin I, Luxenhofer R, Werner C, Jordan R (2012) Tailored poly(2-oxazoline) polymer brushes to control protein adsorption and cell adhesion. Macromol Biosci 12(7):926–936. https://doi.org/10.1002/mabi.201200026

Article  CAS  PubMed  Google Scholar 

Lorson T, Lübtow MM, Wegener E et al (2018) Poly(2-oxazoline)s based biomaterials: a comprehensive and critical update. Biomaterials 178:204–280. https://doi.org/10.1016/j.biomaterials.2018.05.022

Article  CAS  PubMed  Google Scholar 

Viegas TX, Bentley MD, Harris JM et al (2011) Polyoxazoline: chemistry, properties, and applications in drug delivery. Bioconjug Chem 22(5):976–986. https://doi.org/10.1021/bc200049d

Article  CAS  PubMed  Google Scholar 

Abramov A, Xue Y, Zakharchenko A et al (2023) Bioprosthetic heart valve structural degeneration associated with metabolic syndrome: Mitigation with polyoxazoline modification. Proc Natl Acad Sci U S A 120(1):e2219054120. https://doi.org/10.1073/pnas.2219054120

Article  CAS  PubMed  Google Scholar 

Schoen FJ, Levy RJ, Nelson AC, Bernhard WF, Nashef A, Hawley M (1985) Onset and progression of experimental bioprosthetic heart valve calcification. Lab Invest 52(5):523–532

CAS  PubMed  Google Scholar 

Patel ND, Levi DS, Cheatham JP, Qureshi SA, Shahanavaz S, Zahn EM (2022) Transcatheter pulmonary valve replacement: a review of current valve technologies. J Soc Cardiovasc Angiogr Interv 1(6):100452. https://doi.org/10.1016/j.jscai.2022.100452

Article  PubMed  PubMed Central  Google Scholar 

Wells WJ, Arroyo H Jr, Bremner RM, Wood J, Starnes VA (2002) Homograft conduit failure in infants is not due to somatic outgrowth. J Thorac Cardiovasc Surg 124(1):88–96. https://doi.org/10.1067/mtc.2002.121158

Article  PubMed  Google Scholar 

Dvir D, Bourguignon T, Otto CM et al (2018) Standardized definition of structural valve degeneration for surgical and transcatheter bioprosthetic aortic valves. Circulation 137(4):388–399. https://doi.org/10.1161/CIRCULATIONAHA.117.030729

Article  PubMed  Google Scholar 

Gong G, Seifter E, Lyman WD, Factor SM, Blau S, Frater RW (1993) Bioprosthetic cardiac valve degeneration: role of inflammatory and immune reactions. J Heart Valve Dis 2(6):684–693

CAS  PubMed  Google Scholar 

Schoenhoff FS, Loup O, Gahl B et al (2011) The contegra bovine jugular vein graft versus the Shelhigh pulmonic porcine graft for reconstruction of the right ventricular outflow tract: a comparative study. J Thorac Cardiovasc Surg 141(3):654–661. https://doi.org/10.1016/j.jtcvs.2010.06.068

Article  PubMed  Google Scholar 

Herijgers P, Ozaki S, Verbeken E et al (2002) Valved jugular vein segments for right ventricular outflow tract reconstruction in young sheep. J Thorac Cardiovasc Surg 124(4):798–805. https://doi.org/10.1067/mtc.2002.121043

Article  PubMed  Google Scholar 

Comments (0)

No login
gif