Ohuma EO et al (2023) National, regional, and global estimates of preterm birth in 2020, with trends from 2010: a systematic analysis. Lancet 402(10409):1261–1271. https://doi.org/10.1016/S0140-6736(23)00878-4
Siffel C, Kistler KD, Lewis JFM, Sarda SP (2021) Global incidence of bronchopulmonary dysplasia among extremely preterm infants: a systematic literature review. J Matern Fetal Neonatal Med 34(11):1721–1731. https://doi.org/10.1080/14767058.2019.1646240
Sehgal A, Malikiwi A, Paul E, Tan K, Menahem S (2016) A new look at bronchopulmonary dysplasia: postcapillary pathophysiology and cardiac dysfunction. Pulm Circ 6(4):508–515. https://doi.org/10.1086/688641
Article PubMed PubMed Central Google Scholar
Bancalari E, Jain D (2019) Bronchopulmonary dysplasia: 50 years after the original description. Neonatology 115(4):384–391. https://doi.org/10.1159/000497422
Mourani PM, Sontag MK, Younoszai A, Ivy DD, Abman SH (2008) Clinical utility of echocardiography for the diagnosis and management of pulmonary vascular disease in young children with chronic lung disease. Pediatrics 121(2):317–325. https://doi.org/10.1542/peds.2007-1583
El-Khuffash A, Schubert U, Levy PT, Nestaas E, de Boode WP (2018) Deformation imaging and rotational mechanics in neonates: a guide to image acquisition, measurement, interpretation, and reference values. Pediatr Res 84(S1):30–45. https://doi.org/10.1038/s41390-018-0080-2
Article PubMed PubMed Central Google Scholar
Levy PT et al (2017) Maturational patterns of systolic ventricular deformation mechanics by two-dimensional speckle-tracking echocardiography in preterm infants over the first year of age. J Am Soc Echocardiogr 30(7):685-698.e1. https://doi.org/10.1016/j.echo.2017.03.003
Article PubMed PubMed Central Google Scholar
Lopez L et al (2024) Guidelines for performing a comprehensive pediatric transthoracic echocardiogram: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr 37(2):119–170. https://doi.org/10.1016/j.echo.2023.11.015
Roediger V (2019) AutoStrain LV/RV/LA—automated strain measurements. Springer, Eindhoven
Levy PT, Holland MR, Sekarski TJ, Hamvas A, Singh GK (2013) Feasibility and reproducibility of systolic right ventricular strain measurement by speckle-tracking echocardiography in premature infants. J Am Soc Echocardiogr 26(10):1201–1213. https://doi.org/10.1016/j.echo.2013.06.005
Article PubMed PubMed Central Google Scholar
Schubert U, Müller M, Abdul-Khaliq H, Norman M (2016) Preterm birth is associated with altered myocardial function in infancy. J Am Soc Echocardiogr 29(7):670–678. https://doi.org/10.1016/j.echo.2016.03.011
Czernik C, Rhode S, Helfer S, Schmalisch G, Bührer C, Schmitz L (2014) Development of left ventricular longitudinal speckle tracking echocardiography in very low birth weight infants with and without bronchopulmonary dysplasia during the neonatal period. PLoS ONE 9(9):e106504. https://doi.org/10.1371/journal.pone.0106504
Article CAS PubMed PubMed Central Google Scholar
Nasu Y et al (2015) Longitudinal systolic strain of the bilayered ventricular septum during the first 72 hours of life in preterm infants. J Echocardiogr 13(3):90–99. https://doi.org/10.1007/s12574-015-0250-8
James AT et al (2014) Assessment of myocardial performance in preterm infants less than 29 weeks gestation during the transitional period. Early Hum Dev 90(12):829–835. https://doi.org/10.1016/j.earlhumdev.2014.09.004
James AT, Corcoran JD, Breatnach CR, Franklin O, Mertens L, El-Khuffash A (2016) Longitudinal assessment of left and right myocardial function in preterm infants using strain and strain rate imaging. Neonatology 109(1):69–75. https://doi.org/10.1159/000440940
Article CAS PubMed Google Scholar
Hamrick SEG et al (2020) Patent ductus arteriosus of the preterm infant. Pediatrics. https://doi.org/10.1542/peds.2020-1209
Bensley JG, Moore L, De Matteo R, Harding R, Black MJ (2018) Impact of preterm birth on the developing myocardium of the neonate. Pediatr Res 83(4):880–888. https://doi.org/10.1038/pr.2017.324
McCrary A et al (2015) Differences in eccentricity index and systolic-diastolic ratio in extremely low-birth-weight infants with bronchopulmonary dysplasia at risk of pulmonary hypertension. Am J Perinatol 33(01):057–062. https://doi.org/10.1055/s-0035-1556757
Koestenberger M et al (2017) Normal reference values and z scores of the pulmonary artery acceleration time in children and its importance for the assessment of pulmonary hypertension. Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.116.005336
Koestenberger M et al (2011) Systolic right ventricular function in preterm and term neonates: reference values of the tricuspid annular plane systolic excursion (TAPSE) in 258 patients and calculation of Z-score values. Neonatology 100(1):85–92. https://doi.org/10.1159/000322006
Telles F et al (2020) Changes in the preterm heart from birth to young adulthood: a meta-analysis. Pediatrics. https://doi.org/10.1542/peds.2020-0146
Levy PT et al (2015) Right ventricular function in preterm and term neonates: reference values for right ventricle areas and fractional area of change. J Am Soc Echocardiogr 28(5):559–569. https://doi.org/10.1016/j.echo.2015.01.024
Article PubMed PubMed Central Google Scholar
Simpson J et al (2017) Three-dimensional echocardiography in congenital heart disease: an expert consensus document from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr 30(1):1–27. https://doi.org/10.1016/j.echo.2016.08.022
Goss KN et al (2017) Postnatal hyperoxia exposure durably impairs right ventricular function and mitochondrial biogenesis. Am J Respir Cell Mol Biol 56(5):609–619. https://doi.org/10.1165/rcmb.2016-0256OC
Article CAS PubMed PubMed Central Google Scholar
Zivanovic S et al (2014) Late outcomes of a randomized trial of high-frequency oscillation in neonates. N Engl J Med 370(12):1121–1130. https://doi.org/10.1056/NEJMoa1309220
Comments (0)