Banat IM, Nigam P, Singh D, Marchant R, McHale AP (1998) Review: ethanol production at elevated temperatures and alcohol concentrations: part I–Yeasts in general. World J Microbiol Biotechnol 14:809–821. https://doi.org/10.1023/A:1008802704374
Castro RCA, Roberto IC (2014) Selection of a thermotolerant Kluyveromyces marxianus strain with potential application for cellulosic ethanol production by simultaneous saccharification and fermentation. Appl Biochem Biotechnol 172:1553–1564. https://doi.org/10.1007/s12010-013-0612-5
Article CAS PubMed Google Scholar
Erdei B, Franká B, Galbe M, Zacchi G (2012) Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw. Biotechnol Biofuels 5:. https://doi.org/10.1186/1754-6834-5-12
Flores-Cosío G, Arellano-Plaza M, Gschaedler-Mathis A, Amaya-Delgado L (2018) Physiological response to Furan derivatives stress by Kluyveromyces Marxianus SLP1 in ethanol production. Rev Mex Ing Quim 17:189–202
Flores-Cosío G, Herrera-López EJ, Arellano-Plaza M, Gschaedler-Mathis A, Sanchez A, Amaya-Delgado L (2019) Dielectric property measurements as a method to determine the physiological state of Kluyveromyces marxianus and Saccharomyces cerevisiae stressed with furan aldehydes. Appl Microbiol Biotechnol 103:9633–9642. https://doi.org/10.1007/s00253-019-10152-2
Article CAS PubMed Google Scholar
Hernández C, Escamilla-Alvarado C, Sánchez A, Alarcón E, Ziarelli F, Musule R, Valdez-Vazquez I (2019) Wheat straw, corn stover, sugarcane, and Agave biomasses: chemical properties, availability, and cellulosic-bioethanol production potential in Mexico. Biofuels Bioprod Biorefin 13:1143–1159. https://doi.org/10.1002/bbb.2017
Ingrao C, Matarazzo A, Gorjian S, damczyk J, Failla S, Primerano P, Huisingh D (2021) Wheat-straw derived bioethanol production: A review of life cycle assessments. Sci Total Environ 781:146751. https://doi.org/10.1016/j.scitotenv.2021.146751
Ishola MM, Brandberg T, Taherzadeh MJ (2015) Simultaneous glucose and xylose utilization for improved ethanol production from lignocellulosic biomass through SSFF with encapsulated yeast. Biomass Bioenergy 77:192–199. https://doi.org/10.1016/j.biombioe.2015.03.021
Jin M, Da Costa Sousa L, Schwartz C, He Y, Sarks C, Gunawan C, Balan V, Dale BE, Royal Society of Chemistry (2016) Toward lower cost cellulosic biofuel production using ammonia based pretreatment technologies. Green Chem. https://doi.org/10.1039/c5gc02433a
Jørgensen H (2009) Effect of nutrients on fermentation of pretreated wheat straw at very high dry matter content by saccharomyces cerevisiae. In: Applied Biochemistry and Biotechnology. pp 44–57. https://doi.org/10.1007/s12010-008-8456-0
Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1:119–134. https://doi.org/10.1002/bbb.4
Pérez-Pimienta JA, Vargas-Tah A, López-Ortega KM, Medina-López YN, Mendoza-Pérez JA, Avila S, Singh S, Simmons BA, Loaces I, Martinez A (2017) Sequential enzymatic saccharification and fermentation of ionic liquid and organosolv pretreated Agave bagasse for ethanol production. Bioresour Technol 225:191–198. https://doi.org/10.1016/j.biortech.2016.11.064
Article CAS PubMed Google Scholar
Polprasert S, Choopakar O, Elefsiniotis P (2021) Bioethanol production from pretreated palm empty fruit bunch (PEFB) using sequential enzymatic hydrolysis and yeast fermentation. Biomass Bioenergy. https://doi.org/10.1016/j.biombioe.2021.106088
Qiu J, Ma L, Shen F, Yang G, Zhang Y, Deng S, Zhang J, Zeng Y, Hu Y (2017) Pretreating wheat straw by phosphoric acid plus hydrogen peroxide for enzymatic saccharification and ethanol production at high solid loading. Bioresour Technol 238:174–181. https://doi.org/10.1016/j.biortech.2017.04.040
Article CAS PubMed Google Scholar
Rodríguez F, Sanchez A, Amaya-Delgado L (2019) Xylooligosaccharides production from lignocellulosic biomass using a pilot-scale pretreatment continuous tubular reactor. Modelling and experimental validation. Ind Crops Prod 134:62–70. https://doi.org/10.1016/j.indcrop.2019.03.058
Saini JK, Agrawal R, Satlewal A, Saini R, Gupta R, Mathur A, Tuli D (2015) Second generation bioethanol production at high gravity of pilot-scale pretreated wheat straw employing newly isolated thermotolerant yeast Kluyveromyces Marxianus DBTIOC-35. RSC Adv 5:37485–37494. https://doi.org/10.1039/c5ra05792b
Sandoval-Nuñez D, Arellano-Plaza M, Gschaedler A, Gschaedler A, Arrizon J, Amaya-Delgado L (2017) A comparative study of lignocellulosic ethanol productivities by Kluyveromyces Marxianus and Saccharomyces cerevisiae. Clean Technol Environ Policy 20:1–9. https://doi.org/10.1007/s10098-017-1470-6
Singh D, Nigam P, Banat IM, Marchant R, McHale AP (1998) Review: ethanol production at elevated temperatures and alcohol concentrations: part II–Use of Kluyveromyces Marxianus IMB3. World J Microbiol Biotechnol 14:823–834. https://doi.org/10.1023/A:1008852424846
Singhania RR, Saini JK, Saini R, Adsul M, Mathur A, Gupta R, Tuli DK (2014) Bioethanol production from wheat straw via enzymatic route employing Penicillium janthinellum cellulases. Bioresour Technol 169:490–495. https://doi.org/10.1016/j.biortech.2014.07.011
Article CAS PubMed Google Scholar
Song Y, Cho EJ, Park CS, Oh CH, Park BJ, Bae HJ (2019) A strategy for sequential fermentation by Saccharomyces cerevisiae and Pichia stipitis in bioethanol production from hardwoods. Renew Energy 139:1281–1289. https://doi.org/10.1016/j.renene.2019.03.032
Taherzadeh MJ, Karimi K (2007) Enzymatic-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bioresour 2:707–738
Tomás-Pejó E, Oliva JM, González A, Ballesteros I, Ballesteros M (2009) Bioethanol production from wheat straw by the thermotolerant yeast Kluyveromyces marxianus CECT 10875 in a simultaneous saccharification and fermentation fed-batch process. Fuel 88:2142–2147. https://doi.org/10.1016/j.fuel.2009.01.014
van Groenestijn JW, Slomp RS (2011) Production of ethanol from wheat straw by pretreatment and fermentation at high dry matter concentrations. Ind Biotechnol 7:136–142. https://doi.org/10.1089/ind.2011.7.136
Wang J, Chae M, Sauvageau D, Bressler DC (2017) Improving ethanol productivity through self-cycling fermentation of yeast: a proof of concept. Biotechnol Biofuels. https://doi.org/10.1186/s13068-017-0879-9
Article PubMed PubMed Central Google Scholar
Wang J, Chae M, Bressler DC, Sauvageau D (2020) Improved bioethanol productivity through gas flow rate-driven self-cycling fermentation. Biotechnol Biofuels. https://doi.org/10.1186/s13068-020-1658-6
Article PubMed PubMed Central Google Scholar
Wang J, Chae M, Beyene D, Sauvageau D, Bressler DC (2021) Co-production of ethanol and cellulose nanocrystals through self-cycling fermentation of wood pulp hydrolysate. Bioresour Technol. https://doi.org/10.1016/j.biortech.2021.124969
Zhao L, Zhang X, Xu J, Ou X, Chang S, Wu M (2015) Techno-economic analysis of bioethanol production from lignocellulosic biomass in China: dilute-acid pretreatment and enzymatic hydrolysis of corn stover. Energies 8:4096–4117. https://doi.org/10.3390/en8054096
Comments (0)