Apak R (2018) Electron transfer-based antioxidant capacity assays and the cupric ion reducing antioxidant capacity (CUPRAC) assay. Measurement of antioxidant activity & capacity: Recent trends and applications, 57–75
Ascanta P, Hanganu A, Marinas IC, Hidalgo J, Gradisteanu-Pircalabioru G, Chifiriuc MC, Tenea GN (2025) Probiotic potential and exopolysaccharide characterization of two native lactic acid bacteria for functional applications. Food Biosci 68:106600
Aziz T, Xingyu H, Sarwar A, Naveed M, Shabbir MA, Khan AA, Ulhaq T, Shahzad M, Zhennai Y, Shami A, Sameeh MY, Alshareef SA, Tashkandi MA, Jalal RS (2023) Assessing the probiotic potential, antioxidant, and antibacterial activities of oat and soy milk fermented with Lactiplantibacillus plantarum strains isolated from Tibetan Kefir [Original Research]. Frontiers in Microbiology, Volume 14–2023. https://doi.org/10.3389/fmicb.2023.1265188
Campanella D, Rizzello CG, Fasciano C, Gambacorta G, Pinto D, Marzani B, Scarano N, De Angelis M, Gobbetti M (2017) Exploitation of grape marc as functional substrate for lactic acid bacteria and bifidobacteria growth and enhanced antioxidant activity. Food Microbiol 65:25–35
Article CAS PubMed Google Scholar
Cheng X, Huang L, Li K-t (2019) Antioxidant activity changes of exopolysaccharides with different carbon sources from Lactobacillus plantarum LPC-1 and its metabolomic analysis. World J Microbiol Biotechnol 35(5):68. https://doi.org/10.1007/s11274-019-2645-6
Article CAS PubMed Google Scholar
Chuah WW, Tan JS, Oslan H, S. N., Bothi Raja P (2024) Enhancing food preservation with postbiotic metabolites γ-aminobutyric acid (GABA) and bacteriocin-like inhibitory substances (BLIS) produced by Lactobacillus brevis C23 co-cultures in plant-based medium. Prep Biochem Biotechnol 54(4):514–525. https://doi.org/10.1080/10826068.2023.2252047
Article CAS PubMed Google Scholar
Di Matteo A, Lavorgna M, Russo C, Orlo E, Isidori M (2024) Natural plant-derived terpenes: antioxidant activity and antibacterial properties against foodborne pathogens, food spoilage and lactic acid bacteria. Appl Food Res 4(2):100528. https://doi.org/10.1016/j.afres.2024.100528
Dissanayake IH, Tabassum W, Alsherbiny M, Chang D, Li CG, Bhuyan DJ (2025) Lactic acid bacterial fermentation as a biotransformation strategy to enhance the bioavailability of phenolic antioxidants in fruits and vegetables: a comprehensive review. Food Res Int 209:116283. https://doi.org/10.1016/j.foodres.2025.116283
Feng T, Wang J (2020) Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review. Gut Microbes 12(1):1801944. https://doi.org/10.1080/19490976.2020.1801944
Article CAS PubMed PubMed Central Google Scholar
Gomand F, Borges F, Burgain J, Guerin J, Revol-Junelles A-M, Gaiani C (2019) Food matrix design for effective lactic acid bacteria delivery. Annu Rev Food Sci Technol 10(Volume 10, 2019):285–310. https://doi.org/10.1146/annurev-food-032818-121140
Article CAS PubMed Google Scholar
Granato D, Santos JS, Escher GB, Ferreira BL, Maggio RM (2018) Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends Food Sci Technol 72:83–90
Gulcin İ (2020) Antioxidants and antioxidant methods: an updated overview. Arch Toxicol 94(3):651–715. https://doi.org/10.1007/s00204-020-02689-3
Article CAS PubMed Google Scholar
He X, Cui Y, Jia Q, Zhuang Y, Gu Y, Fan X, Ding Y (2025) Response mechanisms of lactic acid bacteria under environmental stress and their application in the food industry. Food Bioscience 64:105938. https://doi.org/10.1016/j.fbio.2025.105938
Hu Y, Zhao Y, Jia X, Liu D, Huang X, Wang C, Zhu Y, Yue C, Deng S, Lyu Y (2023) Lactic acid bacteria with a strong antioxidant function isolated from Jiangshui, pickles, and feces [Original Research]. Frontiers in Microbiology, Volume 14–2023. https://doi.org/10.3389/fmicb.2023.1163662
Jafari R, Naghavi NS, Khosravi-Darani K, Doudi M, Shahanipour K (2020) Kombucha microbial starter with enhanced production of antioxidant compounds and invertase. Biocatal Agric Biotechnol 29:101789
Jeong Y, Kim H, Lee JY, Won G, Choi S-I, Kim G-H, Kang C-H (2021) The antioxidant, anti-diabetic, and anti-adipogenesis potential and probiotic properties of lactic acid bacteria isolated from human and fermented foods. Fermentation 7(3):123
Jo D-M, Song M-R, Park S-K, Choi J-H, Oh DK, Kim DH, Kim Y-M (2023) Potential application of lactic acid bacteria for controlling discoloration in tuna (Thunnus orientalis). Food Biosci 54:102856. https://doi.org/10.1016/j.fbio.2023.102856
Kowalska-Baron A (2025) Theoretical insight into antioxidant mechanisms of Trans-Isoferulic acid in aqueous medium at different pH. Int J Mol Sci 26(12):5615
Article CAS PubMed PubMed Central Google Scholar
Küçükgöz K, Franczak A, Borysewicz W, Kamińska K, Salman M, Mosiej W, Kruk M, Kołożyn-Krajewska D, Trząskowska M (2024) Impact of lactic acid fermentation on the organic acids and sugars of developed oat and buckwheat beverages. Fermentation 10(7):373
Kuo H-C, Kwong HK, Chen H-Y, Hsu H-Y, Yu S-H, Hsieh C-W, Lin H-W, Chu Y-L, Cheng K-C (2021) Enhanced antioxidant activity of Chenopodium formosanum Koidz. by lactic acid bacteria: optimization of fermentation conditions. PLoS ONE 16(5):e0249250. https://doi.org/10.1371/journal.pone.0249250
Article CAS PubMed PubMed Central Google Scholar
Lee KJ, Oh YC, Cho WK, Ma JY (2015) Antioxidant and Anti-Inflammatory activity determination of one hundred kinds of pure chemical compounds using offline and online screening HPLC assay. Evidence-Based Complement Altern Med 2015(1):165457. https://doi.org/10.1155/2015/165457
Łepecka A, Szymański P, Okoń A (2024) Indigenous lactic acid bacteria as antioxidant agents in the production of organic raw fermented sausages. Antioxidants 13(11):1305
Article PubMed PubMed Central Google Scholar
Łepecka A, Szymański P, Okoń A (2025) Isolation, identification, and evaluation of the antioxidant properties of lactic acid bacteria strains isolated from meat environment. PLoS ONE 20(7):e0327225
Article PubMed PubMed Central Google Scholar
Lin H-TV, Huang M-Y, Kao T-Y, Lu W-J, Lin H-J, Pan C-L (2020) Production of lactic acid from seaweed hydrolysates via lactic acid bacteria fermentation. Fermentation 6(1):37
Mazumder K, Nabila A, Aktar A, Farahnaky A (2020) Bioactive variability and in vitro and in vivo antioxidant activity of unprocessed and processed flour of nine cultivars of Australian lupin species: a comprehensive substantiation. Antioxidants 9(4):282
Article CAS PubMed PubMed Central Google Scholar
Ni Z-J, Liu X, Xia B, Hu L-T, Thakur K, Wei Z-J (2021) Effects of sugars on the flavor and antioxidant properties of the Maillard reaction products of camellia seed meals. Food Chemistry: X 11:100127. https://doi.org/10.1016/j.fochx.2021.100127
Article CAS PubMed Google Scholar
Papadimitriou K, Alegría Á, Bron PA, Angelis Md, Gobbetti M, Kleerebezem M, Lemos JA, Linares DM, Ross P, Stanton C, Turroni F, Sinderen Dv, Varmanen P, Ventura M, Zúñiga M, Tsakalidou E, Kok J (2016) Stress physiology of lactic acid bacteria. Microbiol Mol Biol Rev 80(3):837–890. https://doi.org/10.1128/mmbr.00076-15
Article CAS PubMed PubMed Central Google Scholar
Rombouts JL, Kranendonk EMM, Regueira A, Weissbrodt DG, Kleerebezem R, van Loosdrecht MCM (2020) Selecting for lactic acid producing and utilising bacteria in anaerobic enrichment cultures. Biotechnol Bioeng 117(5):1281–1293
Article CAS PubMed PubMed Central Google Scholar
Rosales Cavaglieri LA, Isgro MC, Aminahuel C, Parada J, Poloni VL, Montenegro MA, Alonso V, Falcone RD, Cavaglieri LR (2025) Exploring the potential of lactic acid bacteria to produce postbiotics with antimicrobial and antioxidant properties: focus on the probiotic strain Pediococcus pentosaceus RC007 for industrial-scale production. Int J Food Sci Technol. https://doi.org/10.1093/ijfood/vvae003
Sandez Penidez SH, Velasco Manini MA, LeBlanc JG, Gerez CL, Rollán GC (2022) Quinoa sourdough-based biscuits with high antioxidant activity fermented with autochthonous lactic acid bacteria. J Appl Microbiol 132(3):2093–2105. https://doi.org/10.1111/jam.15315
Article CAS PubMed Google Scholar
Tan W-N, Nagarajan K, Lim V, Azizi J, Khaw K-Y, Tong W-Y, Leong C-R, Chear NJ-Y (2022) Metabolomics Analysis and Antioxidant Potential of Endophytic Diaporthe fraxini ED2 Grown in Different Culture Media. Journal of Fungi, 8(5), 519. https://www.mdpi.com/2309-608X/8/5/519
Vo QV, Hoa NT, Flavel M, Thong NM, Boulebd H, Nam PC, Quang DT, Mechler A (2023) A comprehensive study of the radical scavenging activity of Rosmarinic acid. J Org Chem 88(24):17237–17248. https://doi.org/10.1021/acs.joc.3c02093
Comments (0)