Ahmed N, Thompson S, Glaser M (2019) Global aquaculture productivity, environmental sustainability, and climate change adaptability. Environ Manage 63:159–172. https://doi.org/10.1007/s00267-018-1117-3
Bayse SM, Shgughnessy CA, Regish AM, McCormick SD (2020) Upper thermal tolerance and heat shock protein response of juvenile American Shad (Alosa sapidissima). Estuar Coasts 43:182–188. https://doi.org/10.1007/s12237-019-00642-x
Bayse SM, Regish AM, Mccormick SD (2021) Survival and spawning success of American shad (Alosa sapidissima) in varying temperatures and levels of glochidia infection. Fish Physiol Biochem 47:1821–1836. https://doi.org/10.1007/s10695-021-01018-4
Article CAS PubMed Google Scholar
Bondad-Reantaso MG, MacKinnon B, Karunasagar I, Fridman S, Alday-Sanz V, Brun E, Le Groumellec M, Li A, Surachetpong W, Karunasagar I, Hao B, Dall’Occo A, Urbani R, Caputo A (2023) Review of alternatives to antibiotic use in aquaculture. Rev Aquac 15(4):1421–1451. https://doi.org/10.1111/raq.12786
Borrel G, Brugère JF, Gribaldo S, Schmitz RA, Moissl-Eichinger C (2020) The host-associated archaeome. Nat Rev Microbiol 18:622–636. https://doi.org/10.1038/s41579-020-0407-y
Article CAS PubMed Google Scholar
Canosa LF, Bertucci JI (2023) The effect of environmental stressors on growth in fish and its endocrine control. Front Endocrinol. https://doi.org/10.3389/fendo.2023.1109461
Chan HL, Cai JN, Leung PS (2024) Aquaculture production and diversification: what causes what? Aquaculture 583:740626. https://doi.org/10.1016/j.aquaculture.2024.740626
Chen S, Zhou Y, Chen Y, Gu J (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884–i890. https://doi.org/10.1093/bioinformatics/bty560
Article CAS PubMed PubMed Central Google Scholar
Chen JM, Sun RX, Pan CG, Sun Y, Mai BX, Li QX (2020) Antibiotics and food safety in aquaculture. J Agric Food Chem 68(43):11908–11919. https://doi.org/10.1021/acs.jafc.0c03996
Article CAS PubMed Google Scholar
Combe M, Reverter M, Caruso D, Pepey E, Gozlan RE (2023) Impact of global warming on the severity of viral diseases: a potentially alarming threat to sustainable aquaculture worldwide. Microorganisms 11(4):1049. https://doi.org/10.3390/microorganisms11041049
Article PubMed PubMed Central Google Scholar
Deane EE, Woo NYS (2009) Modulation of fish growth hormone levels by salinity, temperature, pollutants and aquaculture related stress: a review. Rev Fish Biol Fish 19:97–120. https://doi.org/10.1007/s11160-008-9091-0
Doan HV, Prakash P, Hoseinifar SH, Ringø E, El-Haroun E, Faggio C, Olsen RE, Tran HQ, Stejskal V, Abdel-Latif HMR, Dawood MAO (2023) Marine-derived products as functional feed additives in aquaculture: a review. Aquacult Rep 31:101679. https://doi.org/10.1016/j.aqrep.2023.101679
Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998. https://doi.org/10.1038/nmeth.2604
Article CAS PubMed Google Scholar
Eissa ESH, Okon EM, Abdel-Warith AWA, Younis EM, Dowidar HA, Elbahnaswy S, Ezzo OH, Munir MB, Chowdhury AJK, Elghany NAA, Mahboub HH, Eissa MEH, Elabd H (2024) In-water Bacillus species probiotic improved water quality, growth, hemato-biochemical profile, immune regulatory genes and resistance of Nile tilapia to Aspergillus flavus infection. Aquacult Int 32:7087–7102. https://doi.org/10.1007/s10499-024-01503-6
Emam SM, Mohammadian B, Mohammadian T, Tabande MR (2024) Autochthonous probiotic bacteria improve intestinal pathology and histomorphology, expression of immune and growth-related genes and resistance against Vibrio alginolyticus in Asian Seabass (Lates calcarifer). Vet Res 48:3209–3227. https://doi.org/10.1007/s11259-024-10502-0
Fan X, Nie L, Chen Z, Zheng Y, Wang G, Shi K (2022) Simultaneous removal of nitrogen and arsenite by heterotrophic nitrification and aerobic denitrification bacterium hydrogenophaga sp. H7. Front Microbiol 13:1103913. https://doi.org/10.3389/fmicb.2022.1103913
Feng J, Chang X, Zhang Y, Yan X, Zhang J, Nie G (2019) Effects of Lactococcus lactis from Cyprinus carpio L. as probiotics on growth performance, innate immune response and disease resistance against Aeromonas hydrophila. Fish Shellfish Immunol 93:73–81. https://doi.org/10.1016/j.fsi.2019.07.028
Article CAS PubMed Google Scholar
Gao R, Qi Z, Lin J, Wang G, Chen G, Yuan L, Sun Q (2023) Chondroitin sulfate alleviated obesity by modulating gut microbiota and liver metabolome in high-fat-diet-induced obese mice. J Agric Food Chem 71(24):9419–9428. https://doi.org/10.1021/acs.jafc.3c02642
Article CAS PubMed Google Scholar
Gephart JA, Golden CD, Asche F, Belton B, Brugere C, Froehlich HE, Fry JP, Halpern BS, Hicks CC, Jones RC, Klinger DH, Little DC, McCauley DJ, Thilsted SH, Troell M, Allison EH (2020) Scenarios for global aquaculture and its role in human nutrition. Rev Fish Sci Aquac 29(1):122–138. https://doi.org/10.1080/23308249.2020.1782342
Ghalwash HR, Salah AS, El-Nokrashy AM, Abozeid AM, Zaki VH, Mohamed RA (2022) Dietary supplementation with Bacillus species improves growth, intestinal histomorphology, innate immunity, antioxidative status and expression of growth and appetite-regulating genes of Nile tilapia fingerlings. Aquac Res 53:1378–1394. https://doi.org/10.1111/are.15671
Giri SS, Sukumaran V, Oviya M (2013) Potential probiotic Lactobacillus plantarum VSG3 improves the growth, immunity, and disease resistance of tropical freshwater fish, Labeo rohita. Fish Shellfish Immunol 34(2):660–666. https://doi.org/10.1016/j.fsi.2012.12.008
Article CAS PubMed Google Scholar
Giri SS, Kim HJ, Jung WJ, Lee SB, Joo SJ, Gupta SK, Park SC (2024) Probiotics in addressing heavy metal toxicities in fish farming. Current progress and perspective Ecotox Environ Safe 282:116755. https://doi.org/10.1016/j.ecoenv.2024.116755
González-Félix ML, Gatlin DM, Urquidez-Bejarano P, Reé-Rodríguez C, Duarte-Rodríguez L, Sánchez F, Casas-Reyes A, Yamamoto FY, Ochoa-Leyva A, Perez-Velazquez M (2018) Effects of commercial dietary prebiotic and probiotic supplements on growth, innate immune responses, and intestinal microbiota and histology of Totoaba macdonaldi. Aquaculture 491:239–251. https://doi.org/10.1016/j.aquaculture.2018.03.031
Guerreiro I, Oliva-Teles A, Enes P (2025) The effect of probiotics and prebiotics on feed intake in cultured fish. Rev Aquac 17(1):e12982. https://doi.org/10.1111/raq.12982
Haran JP, McCormick BA (2021) Aging, frailty, and the microbiome—how dysbiosis influences human aging and disease. Gastroenterology 160(2):507–523. https://doi.org/10.1053/j.gastro.2020.09.060
Article CAS PubMed Google Scholar
Hong PY, Wheeler E, Cann IK, Mackie RI (2011) Phylogenetic analysis of the fecal microbial community in herbivorous land and marine iguanas of the Galápagos Islands using 16S rRNA-based pyrosequencing. ISME J 5(9):1461–1470. https://doi.org/10.1038/ismej.2011.33
Article PubMed PubMed Central Google Scholar
Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291(5505):881–881. https://doi.org/10.1126/science.291.5505.881
Article CAS PubMed Google Scholar
Hossain MK, Naziat A, Atikullah M, Hasan MT, Ferdous Z, Paray BA, Zahangir MM, Shahjahan M (2024) Probiotics relieve growth retardation and stress by upgrading immunity in Nile tilapia (Oreochromis niloticus) during high temperature events. Anim Feed Sci Tech 316:116054. https://doi.org/10.1016/j.anifeedsci.2024.116054
Hu C, Huang Z, Sun B, Liu M, Tang L, Chen L (2022) Metabolomic profiles in zebrafish larvae following probiotic and perfluorobutanesulfonate coexposure. Environ Res 204:112380. https://doi.org/10.1016/j.envres.2021.112380
Article CAS PubMed Google Scholar
Huang J, Zhang Y, Xu L, He K, Wen B, Yang P, Ding J, Li J, Ma H, Gao J, Chen Z (2022) Microplastics: a tissue-specific threat to microbial community and biomarkers of discus fish (Symphysodon aequifasciatus). J Hazard Mater 424:127751. https://doi.org/10.1016/j.jhazmat.2021.127751
Article CAS PubMed Google Scholar
Ilić M, Klintworth S, Jackson MC (2021) Quality over quantity: trophic cascades in a warming world. Funct Ecol 35:818–820. https://doi.org/10.1111/1365-2435.13775
Comments (0)