Engineering a novel carbaryl-degrading esterase from for enhanced degradability via semi-rational design and whole-cell biocatalysis

Ban X, Wu J, Kaustubh B, Lahiri P, Dhoble AS, Gu Z, Li C, Cheng L, Hong Y, Tong Y, Li Z (2020) Additional salt bridges improve the thermostability of 1,4-α-glucan branching enzyme. Food Chem 316:126348. https://doi.org/10.1016/j.foodchem.2020.126348

Article  CAS  PubMed  Google Scholar 

Chakravarty S, Varadarajan R (2002) Elucidation of factors responsible for enhanced thermal stability of proteins: a structural genomics based study. Biochemistry 41(25):8152–8161. https://doi.org/10.1021/bi025523t

Article  CAS  PubMed  Google Scholar 

Chapalamadugu S, Chaudhry GR (1991) Hydrolysis of Carbaryl by a Pseudomonas sp. and construction of a microbial consortium that completely metabolizes Carbaryl. Appl Environ Microbiol 57(3):744–750. https://doi.org/10.1128/aem.57.3.744-750.1991

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daugherty PS (2007) Protein engineering with bacterial display. Curr Opin Struct Biol 17(4):474–480. https://doi.org/10.1016/j.sbi.2007.07.004

Article  CAS  PubMed  Google Scholar 

Deshpande MV, Eriksson KE, Pettersson LG (1984) An assay for selective determination of exo-1,4,-β-glucanases in a mixture of cellulolytic enzymes. Anal Biochem 138(2):481–487. https://doi.org/10.1016/0003-2697(84)90843-1

Article  CAS  PubMed  Google Scholar 

Doddamani HP, Ninnekar HZ (2001) Biodegradation of carbaryl by a Micrococcus species. Curr Microbiol 43:69–73. https://doi.org/10.1007/s002840010262

Article  CAS  PubMed  Google Scholar 

Ghauch A, Gallet C, Charef A, Rima J, Martin-Bouyer M (2001) Reductive degradation of Carbaryl in water by zero-valent iron. Chemosphere 42(4):419–424. https://doi.org/10.1016/s0045-6535(00)00073-4

Article  CAS  PubMed  Google Scholar 

Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345. https://doi.org/10.1038/nmeth.1318

Article  CAS  PubMed  Google Scholar 

Gunasekara AS, Rubin AL, Goh KS, Spurlock FC, Tjeerdema RS (2008) Environmental fate and toxicology of Carbaryl. Rev Environ Contam Toxicol 196:95–121. https://doi.org/10.1007/978-0-387-78444-1_4

Article  CAS  PubMed  Google Scholar 

Han S, Kim D, Kim Y, Yoon SH (2024) Genome-scale metabolic network model and phenome of solvent-tolerant Pseudomonas putida S12. BMC Genomics 25(1):63. https://doi.org/10.1186/s12864-023-09940-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilisation. Chem Soc Rev 38(2):453–468. https://doi.org/10.1039/b711564b

Article  CAS  PubMed  Google Scholar 

Hashimoto M, Fukui M, Hayano K, Hayatsu M (2002) Nucleotide sequence and genetic structure of a novel Carbaryl hydrolase gene (cehA) from Rhizobium sp. strain AC100. Appl Environ Microbiol 68(3):1220–1227. https://doi.org/10.1128/AEM.68.3.1220-1227.2002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hashimoto M, Mizutani A, Tago K, Ohnishi-Kameyama M, Shimojo T, Hayatsu M (2006) Cloning and nucleotide sequence of Carbaryl hydrolase gene (cahA) from Arthrobacter sp. RC100. J Biosci Bioeng 101(5):410–414. https://doi.org/10.1263/jbb.101.410

Article  CAS  PubMed  Google Scholar 

Hassan S, Ganai AH (2023) Deciphering the recent trends in pesticide bioremediation using genome editing and multi-omics approaches: a review. World J Microbiol Biotechnol 39:151. https://doi.org/10.1007/s11274-023-03603-6

Article  PubMed  Google Scholar 

Hayatsu M, Nagata T (1993) Purification and characterization of Carbaryl hydrolase from Blastobacter sp. strain M501. Appl Environ Microbiol 59(7):2121–2125. https://doi.org/10.1128/aem.59.7.2121-2125.1993

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hayatsu M, Hirano M, Nagata T (1999) Involvement of two plasmids in the degradation of Carbaryl by Arthrobacter sp. strain RC100. Appl Environ Microbiol 65(3):1015–1019. https://doi.org/10.1128/aem.65.3.1015-1019.1999

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holmquist M (2000) Alpha beta-hydrolase fold enzymes structures, functions and mechanisms. Curr Protein Pept Sci 1(2):209–235. https://doi.org/10.2174/1389203003381405

Article  CAS  PubMed  Google Scholar 

Hu K, Wang X, Zhu J, Liu A, Ao X, He L, Chen S, Zhou K, Yang Y, Zou L, Liu S (2020) Characterization of carbaryl-degrading strain Bacillus licheniformis B-1 and its hydrolase identification. Biodegradation 31(1–2):139–152. https://doi.org/10.1007/s10532-020-09899-7

Article  CAS  PubMed  Google Scholar 

Huang Z, Zhou J, Wang J, Xu S, Cheng C, Ma J, Gao Z (2025) Complementary distant and active site mutations simultaneously enhance catalytic activity and thermostability of α-galactosidase. J Agric Food Chem 73(6):3635–3644. https://doi.org/10.1021/acs.jafc.4c12426

Article  CAS  PubMed  Google Scholar 

Isak N, Xhaxhiu K (2023) A review on the adsorption of diuron, carbaryl, and alachlor using natural and activated clays. Remediation 33(4):339–353. https://doi.org/10.1002/rem.21757

Article  Google Scholar 

Jiang S, Zhang Z, Gu Q, Yu X (2024) Semi-rational design for enhancing thermostability of Culex pipiens acetylcholinesterase and sensitivity analysis of acephate. Sci Total Environ 934:173282. https://doi.org/10.1016/j.scitotenv.2024.173282

Article  CAS  PubMed  Google Scholar 

Kamini SD, Trivedi VD, Varunjikar M, Phale PS (2018) Compartmentalization of the Carbaryl degradation pathway: molecular characterization of inducible periplasmic Carbaryl hydrolase from Pseudomonas spp. Appl Environ Microbiol 84(2):e02115–e02117. https://doi.org/10.1128/AEM.02115-17

Article  PubMed  PubMed Central  Google Scholar 

Kaur S, Chowdhary S, Kumar D, Bhattacharyya R, Banerjee D (2023) Organophosphorus and carbamate pesticides: molecular toxicology and laboratory testing. Clin Chim Acta 551:117584. https://doi.org/10.1016/j.cca.2023.117584

Article  CAS  PubMed  Google Scholar 

Kaur R, Choudhary D, Bali S, Bandral SS, Singh V, Ahmad MA, Rani N, Singh TG, Chandrasekaran B (2024) Pesticides: an alarming detrimental to health and environment. Sci Total Environ 915:170113. https://doi.org/10.1016/j.scitotenv.2024.170113

Article  CAS  PubMed  Google Scholar 

Kazlauskas R (2018) Engineering more stable proteins. Chem Soc Rev 47(24):9026–9045. https://doi.org/10.1039/c8cs00014j

Article  CAS  PubMed  Google Scholar 

Ke Z, Zhu Q, Jiang W, Zhou Y, Zhang M, Jiang M, Hong Q (2021) Heterologous expression and exploration of the enzymatic properties of the Carbaryl hydrolase CarH from a newly isolated Carbaryl-degrading strain. Ecotoxicol Environ Saf 224:112666. https://doi.org/10.1016/j.ecoenv.2021.112666

Article  CAS  PubMed  Google Scholar 

Khoobdel M, Shayeghi M, Golsorkhi S, Abtahi M, Vatandoost H, Zeraatii H, Bazrafkan S (2010) Effectiveness of ultrasound and ultraviolet irradiation on degradation of Carbaryl from aqueous solutions. Iran J Arthropod Borne Dis 4(1):47–53. https://doi.org/PMID:22808388

CAS  PubMed  PubMed Central  Google Scholar 

King AM, Aaron CK (2015) Organophosphate and carbamate poisoning. Emerg Med Clin North Am 33(1):133–151. https://doi.org/10.1016/j.emc.2014.09.010

Article 

Comments (0)

No login
gif