Wingerchuk DM, Banwell B, Bennett JL et al (2015) International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 85:177–189. https://doi.org/10.1212/wnl.0000000000001729
Article PubMed PubMed Central Google Scholar
Kümpfel T, Giglhuber K, Aktas O et al (2024) Update on the diagnosis and treatment of neuromyelitis Optica spectrum disorders (NMOSD) - revised recommendations of the neuromyelitis Optica study group (NEMOS). Part II: attack therapy and long-term management. J Neurol 271:141–176. https://doi.org/10.1007/s00415-023-11910-z
Jarius S, Aktas O, Ayzenberg I et al (2023) Update on the diagnosis and treatment of neuromyelitis Optica spectrum disorders (NMOSD) - revised recommendations of the neuromyelitis Optica study group (NEMOS). Part I: diagnosis and differential diagnosis. J Neurol 270:3341–3368. https://doi.org/10.1007/s00415-023-11634-0
Article PubMed PubMed Central Google Scholar
Kitley J, Leite MI, Nakashima I et al (2012) Prognostic factors and disease course in aquaporin-4 antibody-positive patients with neuromyelitis Optica spectrum disorder from the united Kingdom and Japan. Brain 135:1834–1849. https://doi.org/10.1093/brain/aws109
Nicholson JK, Lindon JC (2008) Systems biology: metabonomics. Nature 455:1054–1056. https://doi.org/10.1038/4551054a
Article CAS PubMed Google Scholar
Duan A, Qiu Y, Song B, Tao Y, Wang M, Yin Z, Xie M, Chen Z, Wang Z, Sun X (2024) Metabolome-wide Mendelian randomization assessing the causal role of serum and cerebrospinal metabolites in traumatic brain injury. Biomedicines 12:1178. https://doi.org/10.3390/biomedicines12061178
Article CAS PubMed PubMed Central Google Scholar
Shi L, Xu J, Green R et al (2023) Multiomics profiling of human plasma and cerebrospinal fluid reveals ATN-derived networks and highlights causal links in Alzheimer’s disease. Alzheimers Dement 19:3350–3364. https://doi.org/10.1002/alz.12961
Article CAS PubMed Google Scholar
Thoman ME, McKarns SC (2020) Metabolomic profiling in neuromyelitis Optica spectrum disorder biomarker discovery. Metabolites 10:374. https://doi.org/10.3390/metabo10090374
Article CAS PubMed PubMed Central Google Scholar
Deng J, Xia Z, Qiu D, Jiao X, Xiao B, Zhou W, Yang H, Li J (2019) Nontarget metabolomics profiling of neuromyelitis Optica spectrum disorder. Biomed Chromatogr 33:e4533. https://doi.org/10.1002/bmc.4533
Article CAS PubMed Google Scholar
Bian J, Sun J, Chang H, Wei Y, Cong H, Yao M, Xiao F, Wang H, Zhao Y, Liu J, Zhang X, Yin L (2023) Profile and potential role of novel metabolite biomarkers, especially indoleacrylic acid, in pathogenesis of neuromyelitis Optica spectrum disorders. Front Pharmacol 14:1166085. https://doi.org/10.3389/fphar.2023.1166085
Article CAS PubMed PubMed Central Google Scholar
Li G, Ma X, Xia L, Wei R, Wang X, Li C, Wang Y, He L, Ren H, Sun J, Qiu W (2023) Integrative analysis of purine metabolites and gut microbiota in patients with neuromyelitis Optica spectrum disorders after mycophenolate mofetil treatment. BMC Neurol 23:444. https://doi.org/10.1186/s12883-023-03500-3
Article CAS PubMed PubMed Central Google Scholar
Pierce BL, Burgess S (2013) Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol 178:1177–1184. https://doi.org/10.1093/aje/kwt084
Article PubMed PubMed Central Google Scholar
Boehm FJ, Zhou X (2022) Statistical methods for Mendelian randomization in genome-wide association studies: a review. Comput Struct Biotechnol J 20:2338–2351. https://doi.org/10.1016/j.csbj.2022.05.015
Article CAS PubMed PubMed Central Google Scholar
Burgess S, Davey Smith G, Davies NM, Dudbridge F, Gill D, Glymour MM, Hartwig FP, Kutalik Z, Holmes MV, Minelli C, Morrison JV, Pan W, Relton CL, Theodoratou E (2019) Guidelines for performing Mendelian randomization investigations: update for summer 2023. Wellcome Open Res 4:186. https://doi.org/10.12688/wellcomeopenres.15555.3
Panyard DJ, Kim KM, Darst BF, Deming YK, Zhong X, Wu Y, Kang H, Carlsson CM, Johnson SC, Asthana S, Engelman CD, Lu Q (2021) Cerebrospinal fluid metabolomics identifies 19 brain-related phenotype associations. Commun Biol 4:63. https://doi.org/10.1038/s42003-020-01583-z
Article CAS PubMed PubMed Central Google Scholar
Shin SY, Fauman EB, Petersen AK et al (2014) An atlas of genetic influences on human blood metabolites. Nat Genet 46:543–550. https://doi.org/10.1038/ng.2982
Article CAS PubMed PubMed Central Google Scholar
Estrada K, Whelan CW, Zhao F, Bronson P, Handsaker RE, Sun C, Carulli JP, Harris T, Ransohoff RM, McCarroll SA, Day-Williams AG, Greenberg BM, MacArthur DG (2018) A whole-genome sequence study identifies genetic risk factors for neuromyelitis Optica. Nat Commun 9:1929. https://doi.org/10.1038/s41467-018-04332-3
Article CAS PubMed PubMed Central Google Scholar
Burgess S, Butterworth A, Thompson SG (2013) Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 37:658–665. https://doi.org/10.1002/gepi.21758
Article PubMed PubMed Central Google Scholar
Papadimitriou N, Dimou N, Tsilidis KK et al (2020) Physical activity and risks of breast and colorectal cancer: a Mendelian randomisation analysis. Nat Commun 11:597. https://doi.org/10.1038/s41467-020-14389-8
Article CAS PubMed PubMed Central Google Scholar
Greco MF, Minelli C, Sheehan NA, Thompson JR (2015) Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat Med 34:2926–2940. https://doi.org/10.1002/sim.6522
Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44:512–525. https://doi.org/10.1093/ije/dyv080
Article PubMed PubMed Central Google Scholar
Verbanck M, Chen CY, Neale B, Do R (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50:693–698. https://doi.org/10.1038/s41588-018-0099-7
Article CAS PubMed PubMed Central Google Scholar
Burgess S, Thompson SG (2017) Interpreting findings from Mendelian randomization using the MR-egger method. Eur J Epidemiol 32:377–389. https://doi.org/10.1007/s10654-017-0255-x
Article PubMed PubMed Central Google Scholar
Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, Barrette M, Gauthier C, Jacques P, Li S, Xia J (2021) MetaboAnalyst 5.0: narrowing the gap between Raw spectra and functional insights. Nucleic Acids Res 49:W388–w396. https://doi.org/10.1093/nar/gkab382
Article CAS PubMed PubMed Central Google Scholar
Xie Z, Zhou Q, Hu J et al (2024) Integrated omics profiling reveals systemic dysregulation and potential biomarkers in the blood of patients with neuromyelitis Optica spectrum disorders. J Transl Med 22:989. https://doi.org/10.1186/s12967-024-05801-8
Article CAS PubMed PubMed Central Google Scholar
Podbielska M, Ariga T, Pokryszko-Dragan A (2022) Sphingolipid players in multiple sclerosis: their influence on the initiation and course of the disease. Int J Mol Sci 23:5330. https://doi.org/10.3390/ijms23105330
Comments (0)