Acetylcarnitine in cerebrospinal fluid and blood as a protective factor for neuromyelitis optica spectrum disorders: a mendelian randomization study

Wingerchuk DM, Banwell B, Bennett JL et al (2015) International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 85:177–189. https://doi.org/10.1212/wnl.0000000000001729

Article  PubMed  PubMed Central  Google Scholar 

Kümpfel T, Giglhuber K, Aktas O et al (2024) Update on the diagnosis and treatment of neuromyelitis Optica spectrum disorders (NMOSD) - revised recommendations of the neuromyelitis Optica study group (NEMOS). Part II: attack therapy and long-term management. J Neurol 271:141–176. https://doi.org/10.1007/s00415-023-11910-z

Article  PubMed  Google Scholar 

Jarius S, Aktas O, Ayzenberg I et al (2023) Update on the diagnosis and treatment of neuromyelitis Optica spectrum disorders (NMOSD) - revised recommendations of the neuromyelitis Optica study group (NEMOS). Part I: diagnosis and differential diagnosis. J Neurol 270:3341–3368. https://doi.org/10.1007/s00415-023-11634-0

Article  PubMed  PubMed Central  Google Scholar 

Kitley J, Leite MI, Nakashima I et al (2012) Prognostic factors and disease course in aquaporin-4 antibody-positive patients with neuromyelitis Optica spectrum disorder from the united Kingdom and Japan. Brain 135:1834–1849. https://doi.org/10.1093/brain/aws109

Article  PubMed  Google Scholar 

Nicholson JK, Lindon JC (2008) Systems biology: metabonomics. Nature 455:1054–1056. https://doi.org/10.1038/4551054a

Article  CAS  PubMed  Google Scholar 

Duan A, Qiu Y, Song B, Tao Y, Wang M, Yin Z, Xie M, Chen Z, Wang Z, Sun X (2024) Metabolome-wide Mendelian randomization assessing the causal role of serum and cerebrospinal metabolites in traumatic brain injury. Biomedicines 12:1178. https://doi.org/10.3390/biomedicines12061178

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi L, Xu J, Green R et al (2023) Multiomics profiling of human plasma and cerebrospinal fluid reveals ATN-derived networks and highlights causal links in Alzheimer’s disease. Alzheimers Dement 19:3350–3364. https://doi.org/10.1002/alz.12961

Article  CAS  PubMed  Google Scholar 

Thoman ME, McKarns SC (2020) Metabolomic profiling in neuromyelitis Optica spectrum disorder biomarker discovery. Metabolites 10:374. https://doi.org/10.3390/metabo10090374

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng J, Xia Z, Qiu D, Jiao X, Xiao B, Zhou W, Yang H, Li J (2019) Nontarget metabolomics profiling of neuromyelitis Optica spectrum disorder. Biomed Chromatogr 33:e4533. https://doi.org/10.1002/bmc.4533

Article  CAS  PubMed  Google Scholar 

Bian J, Sun J, Chang H, Wei Y, Cong H, Yao M, Xiao F, Wang H, Zhao Y, Liu J, Zhang X, Yin L (2023) Profile and potential role of novel metabolite biomarkers, especially indoleacrylic acid, in pathogenesis of neuromyelitis Optica spectrum disorders. Front Pharmacol 14:1166085. https://doi.org/10.3389/fphar.2023.1166085

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li G, Ma X, Xia L, Wei R, Wang X, Li C, Wang Y, He L, Ren H, Sun J, Qiu W (2023) Integrative analysis of purine metabolites and gut microbiota in patients with neuromyelitis Optica spectrum disorders after mycophenolate mofetil treatment. BMC Neurol 23:444. https://doi.org/10.1186/s12883-023-03500-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pierce BL, Burgess S (2013) Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol 178:1177–1184. https://doi.org/10.1093/aje/kwt084

Article  PubMed  PubMed Central  Google Scholar 

Boehm FJ, Zhou X (2022) Statistical methods for Mendelian randomization in genome-wide association studies: a review. Comput Struct Biotechnol J 20:2338–2351. https://doi.org/10.1016/j.csbj.2022.05.015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burgess S, Davey Smith G, Davies NM, Dudbridge F, Gill D, Glymour MM, Hartwig FP, Kutalik Z, Holmes MV, Minelli C, Morrison JV, Pan W, Relton CL, Theodoratou E (2019) Guidelines for performing Mendelian randomization investigations: update for summer 2023. Wellcome Open Res 4:186. https://doi.org/10.12688/wellcomeopenres.15555.3

Article  PubMed  Google Scholar 

Panyard DJ, Kim KM, Darst BF, Deming YK, Zhong X, Wu Y, Kang H, Carlsson CM, Johnson SC, Asthana S, Engelman CD, Lu Q (2021) Cerebrospinal fluid metabolomics identifies 19 brain-related phenotype associations. Commun Biol 4:63. https://doi.org/10.1038/s42003-020-01583-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shin SY, Fauman EB, Petersen AK et al (2014) An atlas of genetic influences on human blood metabolites. Nat Genet 46:543–550. https://doi.org/10.1038/ng.2982

Article  CAS  PubMed  PubMed Central  Google Scholar 

Estrada K, Whelan CW, Zhao F, Bronson P, Handsaker RE, Sun C, Carulli JP, Harris T, Ransohoff RM, McCarroll SA, Day-Williams AG, Greenberg BM, MacArthur DG (2018) A whole-genome sequence study identifies genetic risk factors for neuromyelitis Optica. Nat Commun 9:1929. https://doi.org/10.1038/s41467-018-04332-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burgess S, Butterworth A, Thompson SG (2013) Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 37:658–665. https://doi.org/10.1002/gepi.21758

Article  PubMed  PubMed Central  Google Scholar 

Papadimitriou N, Dimou N, Tsilidis KK et al (2020) Physical activity and risks of breast and colorectal cancer: a Mendelian randomisation analysis. Nat Commun 11:597. https://doi.org/10.1038/s41467-020-14389-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Greco MF, Minelli C, Sheehan NA, Thompson JR (2015) Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat Med 34:2926–2940. https://doi.org/10.1002/sim.6522

Article  Google Scholar 

Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44:512–525. https://doi.org/10.1093/ije/dyv080

Article  PubMed  PubMed Central  Google Scholar 

Verbanck M, Chen CY, Neale B, Do R (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50:693–698. https://doi.org/10.1038/s41588-018-0099-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burgess S, Thompson SG (2017) Interpreting findings from Mendelian randomization using the MR-egger method. Eur J Epidemiol 32:377–389. https://doi.org/10.1007/s10654-017-0255-x

Article  PubMed  PubMed Central  Google Scholar 

Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, Barrette M, Gauthier C, Jacques P, Li S, Xia J (2021) MetaboAnalyst 5.0: narrowing the gap between Raw spectra and functional insights. Nucleic Acids Res 49:W388–w396. https://doi.org/10.1093/nar/gkab382

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie Z, Zhou Q, Hu J et al (2024) Integrated omics profiling reveals systemic dysregulation and potential biomarkers in the blood of patients with neuromyelitis Optica spectrum disorders. J Transl Med 22:989. https://doi.org/10.1186/s12967-024-05801-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Podbielska M, Ariga T, Pokryszko-Dragan A (2022) Sphingolipid players in multiple sclerosis: their influence on the initiation and course of the disease. Int J Mol Sci 23:5330. https://doi.org/10.3390/ijms23105330

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif