Gaona-Luviano P, Adriana L, Medina-Gaona, Magaña-Pérez K. Epidemiology of Ovarian cancer. Chin Clin Oncol. 2020. https://doi.org/10.21037/cco-20-34.
Suszczyk D, Skiba W, Jakubowicz-Gil J, Kotarski J, Wertel I. The role of myeloid-derived suppressor cells (MDSCs) in the development and/or progression of endometriosis-state of the art. Cells. 2021. https://doi.org/10.3390/cells10030677.
Article PubMed PubMed Central Google Scholar
Khan ANH, Kolomeyevskaya N, Singel KL, Grimm MJ, Moysich KB, Daudi S, Grzankowski KS, Lele S, Ylagan L, Webster GA, et al. Targeting myeloid cells in the Tumor microenvironment enhances vaccine efficacy in murine epithelial Ovarian cancer. Oncotarget. 2015. https://doi.org/10.18632/oncotarget.3597.
Article PubMed PubMed Central Google Scholar
Rei M, Gonca̧lves-Sousa N, Lanca̧ T, Thompson RG, Mensurado S, Balkwill FR, Kulbe H, Pennington DJ, Silva-Santos B. Murine CD27(-) Vγ6(+) γδ T cells producing IL-17A promote Ovarian cancer growth via mobilization of protumor small peritoneal macrophages. Proc Natl Acad Sci U S A. 2014. https://doi.org/10.1073/pnas.1403424111.
Article PubMed PubMed Central Google Scholar
Bou Ghosn EE, Cassado AA, Govoni GR, Fukuhara T, Yang Y, Monack DM, Bortoluci KR, Almeida SR, Herzenberg LA, Herzenberg LA. Two physically, functionally, and developmentally distinct peritoneal macrophage subsets. Proc Natl Acad Sci U S A. 2010. https://doi.org/10.1073/pnas.0915000107.
Worzfeld T, von Strandmann EP, Huber M, Adhikary T, Wagner U, Reinartz S, Müller R. The unique molecular and cellular microenvironment of Ovarian cancer. Front Oncol. 2017. https://doi.org/10.3389/fonc.2017.00024.
Article PubMed PubMed Central Google Scholar
Lewis CE, Pollard JW. Distinct role of macrophages in different Tumor microenvironments. Cancer Res. 2006. https://doi.org/10.1158/0008-5472.CAN-05-4005.
Yin M, Li X, Tan S, Zhou HJ, Ji W, Bellone S, Xu X, Zhang H, Santin AD, Lou G, et al. Tumor-associated macrophages drive spheroid formation during early transcoelomic Metastasis of Ovarian cancer. J Clin Invest. 2016. https://doi.org/10.1172/JCI87252.
Article PubMed PubMed Central Google Scholar
Condeelis J, Pollard JW, Macrophages. Obligate partners for Tumor cell migration, invasion, and Metastasis. Cell. 2006. https://doi.org/10.1016/j.cell.2006.01.007.
Etzerodt A, Moulin M, Doktor TK, Delfini M, Mossadegh-Keller N, Bajenoff M, Sieweke MH, Moestrup SK, Auphan-Anezin N, Lawrence T. Tissue-resident macrophages in omentum promote metastatic spread of Ovarian cancer. J Exp Med. 2020. https://doi.org/10.1084/jem.20191869.
Article PubMed PubMed Central Google Scholar
Lee WJ, Ko SY, Mohamed MS, Kenny HA, Lengyel E, Naora H. Neutrophils facilitate Ovarian cancer premetastatic niche formation in the omentum. J Exp Med. 2019. https://doi.org/10.1084/jem.20181170.
Article PubMed PubMed Central Google Scholar
Gao Q, Yang Z, Xu S, Li X, Yang X, Jin P, Liu Y, Zhou X, Zhang T, Gong C, et al. Heterotypic CAF-tumor spheroids promote early peritoneal metastatis of Ovarian cancer. J Exp Med. 2019. https://doi.org/10.1084/jem.20180765.
Article PubMed PubMed Central Google Scholar
Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in Gene expression regulation. Cell. 2017. https://doi.org/10.1016/j.cell.2017.05.045.
Article PubMed PubMed Central Google Scholar
Yang Y, Hsu PJ, Chen YS, Yang YG. Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res. 2018. https://doi.org/10.1038/s41422-018-0040-8.
Article PubMed PubMed Central Google Scholar
Xu K, Yang Y, Feng GH, Sun BF, Chen JQ, Li YF, Chen YS, Zhang XX, Wang CX, Jiang LY, et al. Mettl3-mediated m 6 a regulates spermatogonial differentiation and meiosis initiation. Cell Res. 2017. https://doi.org/10.1038/cr.2017.100.
Article PubMed PubMed Central Google Scholar
Yoon KJ, Ringeling FR, Vissers C, Jacob F, Pokrass M, Jimenez-Cyrus D, Su Y, Kim NS, Zhu Y, Zheng L, et al. Temporal control of mammalian cortical neurogenesis by m6A methylation. Cell. 2017. https://doi.org/10.1016/j.cell.2017.09.003.
Article PubMed PubMed Central Google Scholar
Wang CX, Cui GS, Liu X, Xu K, Wang M, Zhang XX, Jiang LY, Li A, Yang Y, Lai WY, et al. METTL3-mediated m 6 A modification is required for cerebellar development. PLoS Biol. 2018. https://doi.org/10.1371/journal.pbio.2004880.
Article PubMed PubMed Central Google Scholar
Chen J, Zhang YC, Huang C, Shen H, Sun B, Cheng X, Zhang YJ, Yang YG, Shu Q, Yang Y, et al. m6A regulates neurogenesis and neuronal development by modulating histone methyltransferase Ezh2. Genomics Proteom Bioinforma. 2019. https://doi.org/10.1016/j.gpb.2018.12.007.
Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, Sun G, Lu Z, Huang Y, Yang CG, et al. m6A RNA methylation regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem cells. Cell Rep. 2017. https://doi.org/10.1016/j.celrep.2017.02.059.
Article PubMed PubMed Central Google Scholar
Yao QJ, Sang L, Lin M, Yin X, Dong W, Gong Y, Zhou BO. Mettl3–Mettl14 methyltransferase complex regulates the quiescence of adult hematopoietic stem cells. Cell Res. 2018. https://doi.org/10.1038/s41422-018-0062-2.
Article PubMed PubMed Central Google Scholar
Luo H, Liu W, Zhang Y, Yang Y, Jiang X, Wu S, Shao L. METTL3-mediated m6A modification regulates cell cycle progression of dental pulp stem cells. Stem Cell Res Ther. 2021. https://doi.org/10.1186/s13287-021-02223-x.
Article PubMed PubMed Central Google Scholar
Lee H, Bao S, Qian Y, Geula S, Leslie J, Zhang C, Hanna JH, Ding L. Stage-specific requirement for Mettl3-dependent m6A mRNA methylation during haematopoietic stem cell differentiation. Nat Cell Biol. 2019. https://doi.org/10.1038/s41556-019-0318-1.
Article PubMed PubMed Central Google Scholar
Li HB, Tong J, Zhu S, Batista PJ, Duffy EE, Zhao J, Bailis W, Cao G, Kroehling L, Chen Y, et al. M 6 A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature. 2017. https://doi.org/10.1038/nature23450.
Article PubMed PubMed Central Google Scholar
Yao Y, Yang Y, Guo W, Xu L, You M, Zhang YC, Sun Z, Cui X, Yu G, Qi Z, et al. METTL3-dependent m6A modification programs T follicular helper cell differentiation. Nat Commun. 2021. https://doi.org/10.1038/s41467-021-21594-6.
Article PubMed PubMed Central Google Scholar
Zheng Z, Zhang L, Cui XL, Yu X, Hsu PJ, Lyu R, Tan H, Mandal M, Zhang M, Sun HL, et al. Control of early B cell development by the RNA N6-Methyladenosine methylation. Cell Rep. 2020. https://doi.org/10.1016/j.celrep.2020.107819.
Article PubMed PubMed Central Google Scholar
Wei J, Yin Y, Zhou J, Chen H, Peng J, Yang J, Tang Y. METTL3 potentiates resistance to cisplatin through m6A modification of TFAP2C in seminoma. J Cell Mol Med. 2020. https://doi.org/10.1111/jcmm.15738.
Article PubMed PubMed Central Google Scholar
Wang L, Hui H, Agrawal K, Kang Y, Li N, Tang R, Yuan J, Rana TM. M 6 a RNA methyltransferases METTL3/14 regulate immune responses to anti-PD‐1 therapy. EMBO J. 2020. https://doi.org/10.15252/embj.2020104514.
Article PubMed PubMed Central Google Scholar
Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, Huang H, Nachtergaele S, Dong L, Hu C, et al. FTO plays an oncogenic role in Acute Myeloid Leukemia as a N6-Methyladenosine RNA demethylase. Cancer Cell. 2017. https://doi.org/10.1016/j.ccell.2016.11.017.
Article PubMed PubMed Central Google Scholar
Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, Chen Y, Sulman EP, Xie K, Bögler O, et al. m6A demethylase ALKBH5 maintains tumorigenicity of Glioblastoma Stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell. 2017. https://doi.org/10.1016/j.ccell.2017.02.013.
Article PubMed PubMed Central Google Scholar
Ma JZ, Yang F, Zhou CC, Liu F, Yuan JH, Wang F, Wang TT, Xu QG, Zhou WP, Sun SH. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6-methyladenosine-dependent primary MicroRNA processing. Hepatology. 2017. https://doi.org/10.1002/hep.28885.
Cheng M, Sheng L, Gao Q, Xiong Q, Zhang H, Wu M, Liang Y, Zhu F, Zhang Y, Zhang X, et al. The m 6 a methyltransferase METTL3 promotes Bladder cancer progression via AFF4/NF-κB/MYC signaling network. Oncogene. 2019. https://doi.org/10.1038/s41388-019-0683-z.
Article PubMed PubMed Central Google Scholar
Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D, Minuesa G, Chou T, Chow A, Saletore Y, Mackay M, et al. The N 6 -methyladenosine (m 6 A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and Leukemia cells. Nat Med. 2017. https://doi.org/10.1038/nm.4416.
Article PubMed PubMed Central Google Scholar
Ramakrishnan M, Mathur SR, Mukhopadhyay A. Fusion-derived epithelial cancer cells express hematopoietic markers and contribute to stem cell and migratory phenotype in ovarian carcinoma. Cancer Res. 2013. https://doi.org/10.1158/0008-5472.CAN-13-0896.
Comments (0)