Gene Regulatory Networks in Coronary Artery Disease

Tsao CW, et al. Heart Disease and Stroke Statistics—2023 Update: A Report From the American Heart Association. Circulation. 2023;147(8):e93–621. https://doi.org/10.1161/CIR.0000000000001123.

Article  PubMed  Google Scholar 

Watkins H, Farrall M. Genetic susceptibility to coronary artery disease: from promise to progress. Nat Rev Genet. 2006;7(3). https://doi.org/10.1038/nrg1805.

Pencina MJ, et al. Quantifying Importance of Major Risk Factors for Coronary Heart Disease. Circulation. 2019;139(13):1603–11. https://doi.org/10.1161/CIRCULATIONAHA.117.031855.

Article  PubMed  Google Scholar 

Björkegren JLM, Lusis AJ. Atherosclerosis: Recent developments. Cell. 2022;185(10):1630–45. https://doi.org/10.1016/j.cell.2022.04.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seldin M, Yang X, Lusis AJ. Systems genetics applications in metabolism research. Nat Metab. 2019;1(11). https://doi.org/10.1038/s42255-019-0132-x.

Yang X. Multitissue Multiomics Systems Biology to Dissect Complex Diseases. Trends Mol Med. 2020;26(8):718–28. https://doi.org/10.1016/j.molmed.2020.04.006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Subramanian I, Verma S, Kumar S, Jere A, Anamika K. Multi-omics Data Integration, Interpretation, and Its Application. Bioinforma Biol Insights. 2020;14:1177932219899051. https://doi.org/10.1177/1177932219899051.

Article  Google Scholar 

Meng Q, Mäkinen V-P, Luk H, Yang X. Systems Biology Approaches and Applications in Obesity, Diabetes, and Cardiovascular Diseases. Curr Cardiovasc Risk Rep. 2013;7(1):73–83. https://doi.org/10.1007/s12170-012-0280-y.

Article  PubMed  Google Scholar 

Arneson D, Shu L, Tsai B, Barrere-Cain R, Sun C, Yang X. Multidimensional Integrative Genomics Approaches to Dissecting Cardiovascular Disease. Front Cardiovasc Med. 2017;4. [Online]. Available: https://www.frontiersin.org/articles/https://doi.org/10.3389/fcvm.2017.00008. Accessed 16 Sep 2023.

Blencowe M, Arneson D, Ding J, Chen Y-W, Saleem Z, Yang X. Network modeling of single-cell omics data: challenges, opportunities, and progresses. Emerg Top Life Sci. 2019;3(4):379–98. https://doi.org/10.1042/etls20180176.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boyle EA, Li YI, Pritchard JK. An Expanded View of Complex Traits: From Polygenic to Omnigenic. Cell. 2017;169(7):1177–86. https://doi.org/10.1016/j.cell.2017.05.038.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Erdmann J, Kessler T, Munoz Venegas L, Schunkert H. A decade of genome-wide association studies for coronary artery disease: the challenges ahead. Cardiovasc Res. 2018;114(9):1241–57. https://doi.org/10.1093/cvr/cvy084.

Article  CAS  PubMed  Google Scholar 

Koyama S, et al. Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease. Nat Genet. 2020;52(11). https://doi.org/10.1038/s41588-020-0705-3.

Akers K, Murali TM. Gene regulatory network inference in single-cell biology. Curr Opin Syst Biol. 2021;26:87–97. https://doi.org/10.1016/j.coisb.2021.04.007.

Article  CAS  Google Scholar 

Armingol E, Officer A, Harismendy O, Lewis NE. Deciphering cell–cell interactions and communication from gene expression. Nat Rev Genet. 2021;22(2). https://doi.org/10.1038/s41576-020-00292-x.

Badia-I-Mompel P, et al. Gene regulatory network inference in the era of single-cell multi-omics. Nat Rev Genet. 2023. https://doi.org/10.1038/s41576-023-00618-5.

Article  PubMed  Google Scholar 

Blencowe M, Karunanayake T, Wier J, Hsu N, Yang X. Network Modeling Approaches and Applications to Unravelling Non-Alcoholic Fatty Liver Disease. Genes. 2019;10(12). https://doi.org/10.3390/genes10120966.

Chai LE, Loh SK, Low ST, Mohamad MS, Deris S, Zakaria Z. A review on the computational approaches for gene regulatory network construction. Comput Biol Med. 2014;48:55–65. https://doi.org/10.1016/j.compbiomed.2014.02.011.

Article  CAS  PubMed  Google Scholar 

Zuo Y, Wei D, Zhu C, Naveed O, Hong W, Yang X. Unveiling the Pathogenesis of Psychiatric Disorders Using Network Models. Genes. 2021;12(7). https://doi.org/10.3390/genes12071101.

Chen S, Mar JC. Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data. BMC Bioinformatics. 2018;19(1):232. https://doi.org/10.1186/s12859-018-2217-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Z, Sun D, Wang C. Evaluation of cell-cell interaction methods by integrating single-cell RNA sequencing data with spatial information. Genome Biol. 2022;23(1):218. https://doi.org/10.1186/s13059-022-02783-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pratapa A, Jalihal AP, Law JN, Bharadwaj A, Murali TM. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nat Methods. 2020;17(2):147–54. https://doi.org/10.1038/s41592-019-0690-6. This gene regulatory network method benchmarking study for single cell data uses multiple accuracy metrics on real and simulated data to highlight the strengths and weaknesses of different approaches.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Woodhouse S, Piterman N, Wintersteiger CM, Göttgens B, Fisher J. SCNS: a graphical tool for reconstructing executable regulatory networks from single-cell genomic data. BMC Syst Biol. 2018;12(1):59. https://doi.org/10.1186/s12918-018-0581-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsumoto H, et al. SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation. Bioinformatics. 2017;33(15):2314–21. https://doi.org/10.1093/bioinformatics/btx194.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring regulatory networks from expression data using tree-based methods. PLoS One. 2010;5(9). https://doi.org/10.1371/journal.pone.0012776.

Bravo González-Blas C, et al. SCENIC+: single-cell multiomic inference of enhancers and gene regulatory networks. Nat Methods. 2023. https://doi.org/10.1038/s41592-023-01938-4.

Aibar S, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14(11). https://doi.org/10.1038/nmeth.4463.

Moerman T, et al. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics. 2019;35(12):2159–61. https://doi.org/10.1093/bioinformatics/bty916.

Article  CAS  PubMed  Google Scholar 

Littman R, Cheng M, Wang N, Peng C, Yang X. SCING: Inference of robust, interpretable gene regulatory networks from single cell and spatial transcriptomics. IScience. 2023;26(7):107124. https://doi.org/10.1016/j.isci.2023.107124.

Jiang J, et al. IReNA: Integrated regulatory network analysis of single-cell transcriptomes and chromatin accessibility profiles. iScience. 2022;25(11):105359. https://doi.org/10.1016/j.isci.2022.105359.

Browaeys R, Saelens W, Saeys Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat Methods. 2020;17(2):159–62. https://doi.org/10.1038/s41592-019-0667-5.

Article  CAS  PubMed  Google Scholar 

Sanchez-Castillo M, Blanco D, Tienda-Luna IM, Carrion MC, Huang Y. A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data. Bioinformatics. 2018;34(6):964–70. https://doi.org/10.1093/bioinformatics/btx605.

Article  CAS  PubMed  Google Scholar 

Zhu J, et al. Increasing the power to detect causal associations by combining genotypic and expression data in segregating populations. PLoS Comput Biol. 2007;3(4):e69. https://doi.org/10.1371/journal.pcbi.0030069.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spitz F, Furlong EEM. Transcription factors: from enhancer binding to developmental control. Nat Rev Genet. 2012;13(9). https://doi.org/10.1038/nrg3207.

Castro-Mondragon JA, et al. JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2022;50(D1):D165–73. https://doi.org/10.1093/nar/gkab1113.

Article  CAS  PubMed  Google Scholar 

Papili Gao N, Ud-Dean SMM, Gandrillon O, Gunawan R. SINCERITIES: inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles. Bioinformatics. 2018;34(2):258–66. https://doi.org/10.1093/bioinformatics/btx575.

Article  CAS  PubMed  Google Scholar 

Kamimoto K, Stringa B, Hoffmann CM, Jindal K, Solnica-Krezel L, Morris SA. Dissecting cell identity via network inference and in silico gene perturbation. Nature. 2023;614(7949). https://doi.org/10.1038/s41586-022-05688-9.

Martin EW, Sung M-H. Challenges of Decoding Transcription Factor Dynamics in Terms of Gene Regulation. Cells. 2018;7(9). https://doi.org/10.3390/cells7090132.

Raj A, van Oudenaarden A. Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences. Cell. 2008;135(2):216–26. https://doi.org/10.1016/j.cell.2008.09.050.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Statello L, Guo C-J, Chen L-L, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2). https://doi.org/10.1038/s41580-020-00315-9.

Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3). https://doi.org/10.1038/cr.2011.22.

Jin S, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun. 2021;12(1). https://doi.org/10.1038/s41467-021-21246-9.

Shao X, et al. Knowledge-graph-based cell-cell communication inference for spatially resolved transcriptomic data with SpaTalk. Nat Commun. 2022;13(1). https://doi.org/10.1038/s41467-022-32111-8.

Cang Z, Nie Q. Inferring spatial and signaling relationships between cells from single cell transcriptomic data. Nat Commun. 2020;11(1):2084. https://doi.org/10.1038/s41467-020-15968-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Y-P, Lei Q-Y. Metabolite sensing and signaling in cell metabolism. Signal Transduct Target Ther. 2018;3(1). https://doi.org/10.1038/s41392-018-0024-7.

Mäkinen V-P, et al. Integrative Genomics Reveals Novel Molecular Pathways and Gene Networks for Coronary Artery Disease. PLOS Genet. 2014;10(7):e1004502. https://doi.org/10.1371/journal.pgen.1004502.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 2008;(1):559, [Online]. Available: https://bmcbioinformatics.biomedcentral.com/articles/https://doi.org/10.1186/1471-2105-9-559.

Koplev S, et al. A mechanistic framework for cardiometabolic and coronary artery diseases. Nat Cardiovasc Res. 2022;1(1). https://doi.org/10.1038/s44161-021-00009-1. Findings from this study that employs both within- and cross-tissue gene regulatory networks from metabolically relevant tissues highlight the ability of gene regulatory networks to predict coronary artery disease heritability beyond what has been identified by GWAS risk loci.

Zeng L, et al. Contribution of Gene Regulatory Networks to Heritability of Coronary Artery Disease. J Am Coll Cardiol. 2019;73(23):2946–57. https://doi.org/10.1016/j.jacc.2019.03.520.

Art

Comments (0)

No login
gif