Roderick TH. Selection for radiation resistance in mice. Genetics. 1963;48:205–16. https://doi.org/10.1093/genetics/48.2.205.
Article CAS PubMed PubMed Central Google Scholar
Strong R, Miller RA, Astle CM, Floyd RA, Flurkey K, Hensley KL, Javors MA, Leeuwenburgh C, Nelson JF, Ongini E, Nadon NL, Warner HR, Harrison DE. Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell. 2008;7:641–50. https://doi.org/10.1111/j.1474-9726.2008.00414.x.
Article CAS PubMed Google Scholar
Strong R, Miller RA, Antebi A, Astle CM, Bogue M, Denzel MS, Fernandez E, Flurkey K, Hamilton KL, Lamming DW, Javors MA, de Magalhães JP, Martinez PA, McCord JM, Miller BF, Müller M, Nelson JF, Ndukum J, Rainger GE, Harrison DE. Longer lifespan in male mice treated with a weakly-estrogenic agonist, an antioxidant, an α-glucosidase inhibitor or a Nrf2-inducer. Aging Cell. 2016;15:872–84. https://doi.org/10.1111/acel.12496.
Article CAS PubMed PubMed Central Google Scholar
Strong R, Miller RA, Bogue M, Fernandez E, Javors MA, Libert S, Marinez PA, Murphy MP, Musi N, Nelson JF, Petrascheck M, Reifsnyder P, Richardson A, Salmon AB, Macchiarini F, Harrison DE. Rapamycin-mediated mouse lifespan extension: late-life dosage regimes with sex-specific effects. Aging Cell. 2020;00:e13269. https://doi.org/10.1111/acel.13269.
Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460:392–5. https://doi.org/10.1038/nature08221.
Article CAS PubMed PubMed Central Google Scholar
Harrison DE, Strong R, Allison DB, Ames BN, Astle CM, Atamna H, Fernandez E, Flurkey K, Javors MA, Nadon NL, Nelson JF, Pletcher S, Simpkins JW, Smith D, Wilkinson JE, Miller RA. Acarbose, 17-α-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell. 2014;13:273–82. https://doi.org/10.1111/acel.12170.
Article CAS PubMed Google Scholar
Harrison DE, Strong R, Alavez S, Astle CM, DiGiovanni J, Fernandez E, Flurkey K, Garratt M, Gelfond JAL, Javors MA, Levi M, Lithgow GJ, Macchiarini F, Nelson JF, Sukoff Rizzo SJ, Slaga TJ, Stearns T, Wilkinson JE, Miller RA. Acarbose, improves health and lifespan in aging HET3 mice. Aging Cell. 2019;18:e12898. https://doi.org/10.1111/acel.12898.
Article CAS PubMed PubMed Central Google Scholar
Harrison DE, Strong R, Reifsnyder P, Kumar N, Fernandez E, Flurkey K, Javors MA, Lopez-Cruzan M, Macchiarini F, Nelson JF, Bitto A, Sindler AL, Cortopassi G, Kavanagh K, Leng L, Bucala R, Rosenthal N, Salmon A, Stearns TM, Bogue M, Miller RA. 17-a-estradiol late in life extends lifespan in aging UM-HET3 male mice; four other drugs do not affect lifespan in either sex. Aging Cell. 2021;20(5):e13328. https://doi.org/10.1111/acel.13328.
Article CAS PubMed PubMed Central Google Scholar
Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R, Fernandez E, Flurkey K, Javors MA, Nelson JF, Orihuela CJ, Pletcher S, Sharp ZD, Sinclair D, Starnes J, Wilkinson JE, Nadon NL, Strong R. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci. 2011;66:191–201. https://doi.org/10.1093/gerona/glq178.
Article CAS PubMed Google Scholar
Miller RA, Harrison DE, Astle CM, Fernandez E, Flurkey K, Han M, Javors MA, Li X, Nadon NL, Nelson JF, Pletcher S, Salmon AB, Sharp ZD, Van Roekel S, Winkleman L, Strong R. Rapamycin-mediated lifespan increase in mice is dose and sex-dependent and metabolically distinct from dietary restriction. Aging Cell. 2014;13:468–77. https://doi.org/10.1111/acel.12194.
Article CAS PubMed PubMed Central Google Scholar
Miller RA, Harrison DE, Allison DB, Bogue M, Diaz V, Fernandez E, Galecki A, Garvey WT, Kumar N, Javors MA, Ladiges WC, Macchiarini F, Nelson J, Reifsnyder P, Rosenthal NA, Salmon AB, Smith Jr DL, Snyder JM, Lombard DB, Strong R. Canagliflozin extends lifespan in genetically heterogeneous male but not female mice. Aging Cell 2020;e13263. https://doi.org/10.1111/acel.13263
Macchiarini F, Miller RA, Strong R, Rosenthal N, Harrison DE. NIA interventions testing program: a collaborative approach for investigating interventions to promote healthy aging. Handbook of the biology of aging 2020
Lipman R, Galecki A, Burke DT, Miller RA. Genetic loci that influence cause of death in a heterogeneous mouse stock. J Gerontol A Biol Sci Med Sci. 2004;59:977–83. https://doi.org/10.1093/gerona/59.10.b977.
Higuera-Ciapara I, Félix-Valenzuela L, Goycoolea FM. Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr. 2006;46(2):185–96. https://doi.org/10.1080/10408690590957188.
Article CAS PubMed Google Scholar
Ambati RR, Phang SM, Ravi S, Aswathanarayana RG. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications–a review. Mar Drugs. 2014;12(1):128–52. https://doi.org/10.3390/md12010128.
Article CAS PubMed PubMed Central Google Scholar
Kohandel Z, Farkhondeh T, Aschner M, Samarghandian S. Nrf2 a molecular therapeutic target for astaxanthin. Biomed Pharmacother. 2021;137:111374. https://doi.org/10.1016/j.biopha.2021.111374.
Article CAS PubMed Google Scholar
Nishida Y, Yamashita E, Miki W. Quenching activities of common hydrophilic and lipophilic antioxidants against singlet oxygen using chemiluminescence detection system. Carotenoid Sci. 2007;11:16–20.
Kidd P. Astaxanthin, cell membrane nutrient with diverse clinical benefits and anti-aging potential. Altern Med Rev. 2011;16(4):355–64.
Fakhri S, Abbaszadeh F, Dargahi L, Jorjani M. Astaxanthin: a mechanistic review on its biological activities and health benefits. Pharmacol Res. 2018;136:1–20. https://doi.org/10.1016/j.phrs.2018.08.012.
Article CAS PubMed Google Scholar
Edwards JA, Bellion P, Beilstein P, Rümbeli R, Schierle J. Review of genotoxicity and rat carcinogenicity investigations with astaxanthin. Regul Toxicol Pharmacol. 2016;75:5–19. https://doi.org/10.1016/j.yrtph.2015.12.009.
Article CAS PubMed Google Scholar
Olson J. Absorption, transport, and metabolism of carotenoids in humans. Pure Appl Chem. 1994;66(5):1011–6. https://doi.org/10.1351/pac199466051011.
McNulty HP, Byun J, Lockwood SF, Jacob RF, Mason RP. Differential effects of carotenoids on lipid peroxidation due to membrane interactions: X-ray diffraction analysis. Biochim Biophys Acta. 2007;1768(1):167–74. https://doi.org/10.1016/j.bbamem.2006.09.010.
Article CAS PubMed Google Scholar
Goto S, Kogure K, Abe K, Kimata Y, Kitahama K, Yamashita E, Terada H. Efficient radical trapping at the surface and inside the phospholipid membrane is responsible for highly potent antiperoxidative activity of the carotenoid astaxanthin. Biochim Biophys Acta. 2001;1512(2):251–8. https://doi.org/10.1016/s0005-2736(01)00326-1.
Article CAS PubMed Google Scholar
Kim SH, Kim H. Inhibitory effect of astaxanthin on oxidative stress-induced mitochondrial dysfunction-a mini-review. Nutrients. 2018;10(9):1137. https://doi.org/10.3390/nu10091137.
Article CAS PubMed PubMed Central Google Scholar
Nishida Y, Nawaz A, Hecht K, Tobe K. Astaxanthin as a novel mitochondrial regulator: a new aspect of carotenoids, beyond antioxidants. Nutrients. 2021;14(1):107. https://doi.org/10.3390/nu14010107.
Article CAS PubMed PubMed Central Google Scholar
Kohandel Z, Farkhondeh T, Aschner M, Pourbagher-Shahri AM, Samarghandian S. Anti-inflammatory action of astaxanthin and its use in the treatment of various diseases. Biomed Pharmacother. 2022;145:112179. https://doi.org/10.1016/j.biopha.2021.112179.
Article CAS PubMed Google Scholar
Ohgami K, Shiratori K, Kotake S, Nishida T, Mizuki N, Yazawa K, Ohno S. Effects of astaxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo. Invest Ophthalmol Vis Sci. 2003;44(6):2694–701. https://doi.org/10.1167/iovs.02-0822.
Sorrenti V, Davinelli S, Scapagnini G, Willcox BJ, Allsopp RC, Willcox DC. Astaxanthin as a putative geroprotector: molecular basis and focus on brain aging. Mar Drugs. 2020;18(7):351. https://doi.org/10.3390/md18070351.
Article CAS PubMed PubMed Central Google Scholar
Kim SH, Kim H. Astaxanthin modulation of signaling pathways that regulate autophagy. Mar Drugs. 2019;17(10):546. https://doi.org/10.3390/md17100546.
Article CAS PubMed PubMed Central Google Scholar
Yazaki K, Yoshikoshi C, Oshiro S, Yanase S. Supplemental cellular protection by a carotenoid extends lifespan via Ins/IGF-1 signaling in Caenorhabditis elegans. Oxid Med Cell Longev. 2011;596240. https://doi.org/10.1155/2011/596240
Fu M, Zhang X, Zhang X, Yang L, Luo S, Liu H. Autophagy plays a role in the prolongation of the life span of Caenorhabditis elegans by astaxanthin. Rejuvenation Res. 2021;24(3):198–205. https://doi.org/10.1089/rej.2020.2355.
Article CAS PubMed Google Scholar
Sudharshan SJ, Veerabhadrappa B, Subramaniyan S, Dyavaiah M. Astaxanthin enhances the longevity of Saccharomyces cerevisiae by decreasing oxidative stress and apoptosis. FEMS Yeast Res 2019;19(1). https://doi.org/10.1093/femsyr/foy113
Huangfu J, Liu J, Sun Z, Wang M, Jiang Y, Chen ZY, Chen F. Antiaging effects of astaxanthin-rich alga Haematococcus pluvialis on fruit flies under oxidative stress. J Agric Food Chem. 2013;61(32):7800–4. https://doi.org/10.1021/jf402224w.
Article CAS PubMed Google Scholar
Akinade TC, Babatunde OO, Adedara AO, Adeyemi OE, Otenaike TA, Ashaolu OP, Johnson TO, Terriente-Felix A, Whitworth AJ, Abolaji AO. Protective capacity of carotenoid trans-astaxanthin in rotenone-induced toxicity in Drosophila melanogaster. Sci Rep. 2022;12(1):4594. https://doi.org/10.1038/s41598-022-08409-4.
Comments (0)