Dudycha JL. A multi-environment comparison of senescence between sister species of Daphnia. Oecologia. 2003;135:555–63.
Constantinou J, Sullivan J, Mirbahai L. Ageing differently: sex-dependent ageing rates in Daphnia magna. Exp Gerontol. 2019;121:33–45. https://doi.org/10.1016/j.exger.2019.03.008.
Article PubMed CAS Google Scholar
Spiridonova O, Kriukov D, Nemirovich-Danchenko N, Peshkin L. On standardization of controls in lifespan studies. Aging (Albany NY). 2024;16(4):3047—3055 .https://doi.org/10.18632/aging.205604
Finch CE, Ruvkun G. The genetics of aging. Annu Rev Genomics Hum Genet. 2001;2:435–62. https://doi.org/10.1146/annurev.genom.2.1.435.
Article PubMed CAS Google Scholar
Ziehm M, Piper MD, Thornton JM. Analysing variation in Drosophila aging across independent experimental studies: a meta-analysis of survival data. Aging Cell. 2013;12(5):917–22. https://doi.org/10.1111/acel.12123.
Article PubMed CAS Google Scholar
Lucanic M, Plummer W, Chen E, et al. Impact of genetic background and experimental reproducibility on identifying chemical compounds with robust longevity effects. Nat Commun. 2017;8:14256. https://doi.org/10.1038/ncomms14256.
Article PubMed PubMed Central CAS Google Scholar
Banse SA, Lucanic M, Sedore CA, et al. Automated lifespan determination across Caenorhabditis strains and species reveals assay-specific effects of chemical interventions. GeroScience. 2019;41:945–60. https://doi.org/10.1007/s11357-019-00108-9.
Article PubMed PubMed Central CAS Google Scholar
Bartke A, Evans TR, Musters CJM. Anti-aging interventions affect lifespan variability in sex, strain, diet and drug dependent fashion. Aging (Albany NY). 2019;11(12):4066–74. https://doi.org/10.18632/aging.102037.
Article PubMed CAS Google Scholar
Yuan R, Musters CJM, Zhu Y, Evans TR, Sun Y, Chesler EJ, Peters LL, Harrison DE, Bartke A. Genetic differences and longevity-related phenotypes influence lifespan and lifespan variation in a sex-specific manner in mice. Aging Cell. 2020;19(11):e13263. https://doi.org/10.1111/acel.13263.
Article PubMed PubMed Central CAS Google Scholar
Urban ND, Cavataio JP, Berry Y, Vang B, Maddali A, Sukpraphrute RJ, Schnell S, Truttmann MC. Explaining inter-lab variance in C. elegans N2 lifespan: making a case for standardized reporting to enhance reproducibility. Exp Gerontol. 2021;156:111622. https://doi.org/10.1016/j.exger.2021.111622
Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvári M, Piper MD, Hoddinott M, Sutphin GL, Leko V, McElwee JJ, Vazquez-Manrique RP, Orfila AM, Ackerman D, Au C, Vinti G, Riesen M, Howard K, Neri C, Bedalov A, Kaeberlein M, Soti C, Partridge L, Gems D. (2011). Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477(7365): 482–485. https://doi.org/10.1038/nature10296.
Kaya A, Phua CZJ, Lee M, Wang L, Tyshkovskiy A, Ma S, Barre B, Liu W, Harrison BR, Zhao X, Zhou X, Wasko BM, Bammler TK, Promislow DE, Kaeberlein M, Gladyshev VN. Evolution of natural lifespan variation and molecular strategies of extended lifespan in yeast. Elife. 2021;9(10):e64860. https://doi.org/10.7554/eLife.64860.
Mackay TF. The nature of quantitative genetic variation for Drosophila longevity. Mech Ageing Dev. 2002;123(2–3):95–104. https://doi.org/10.1016/s0047-6374(01)00330-x.
Dick KB, Ross C, Yampolsky LY. Genetic variation of dietary restriction, nutrient-free water and amino acid supplements effects on lifespan and fecundity of Drosophila. Genetics Research. 2011;93:265–73.
Article PubMed CAS Google Scholar
Mackay TFC, Richards S, Stone EA, et al. The Drosophila melanogaster genetic reference panel. Nature. 2012;482(7384):173–8. https://doi.org/10.1038/nature10811.
Article PubMed PubMed Central CAS Google Scholar
Rose MR. Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution. 1984;38:1004–10.
Doroszuk A, Jonker MJ, Pul N, Breit TM, Zwaan BJ. Transcriptome analysis of a long-lived natural Drosophila variant: a prominent role of stress- and reproduction-genes in lifespan extension. BMC Genomics. 2012;13:167. https://doi.org/10.1186/1471-2164-13-167.
Article PubMed PubMed Central CAS Google Scholar
Parker GA, Kohn N, Spirina A, McMillen A, Huang W, Mackay TFC. 2020. Genetic basis of increased lifespan and postponed senescence in Drosophila melanogaster. G3 (Bethesda). Mar 5;10(3):1087–1098. https://doi.org/10.1534/g3.120.401041.
Huang W, Campbell T, Carbone MA, Jones WE, Unselt D, Anholt RRH, Mackay TFC. Context-dependent genetic architecture of Drosophila life span. PLoS Biol. 2020;18(3):e3000645. https://doi.org/10.1371/journal.pbio.3000645.
Article PubMed PubMed Central CAS Google Scholar
Rohde PD, Bøcker A, Jensen CAB, Bergstrøm AL, Madsen MIJ, Christensen SL, Villadsen SB, Kristensen TN. Genotype and trait specific responses to rapamycin intake in Drosophila melanogaster. Insects. 2021;12(5):474. https://doi.org/10.3390/insects12050474.PMID:34065203;PMCID:PMC8161023.
Article PubMed PubMed Central Google Scholar
Pallares LF, Lea AJ, Han C, Filippova EV, Andolfatto P, Ayroles JF. Dietary stress remodels the genetic architecture of lifespan variation in outbred Drosophila. Nat Genet. 2023;55(1):123–9. https://doi.org/10.1038/s41588-022-01246-1.
Article PubMed CAS Google Scholar
Simons MJP, Dobson AJ. The importance of reaction norms in dietary restriction and ageing research. Ageing Res Rev. 2023;87:101926. https://doi.org/10.1016/j.arr.2023.101926.
Article PubMed CAS Google Scholar
Dudycha JL, Hassel C. Aging in sexual and obligately asexual clones of Daphnia from temporary ponds. J Plankton Res. 2013;35(2):253–9. https://doi.org/10.1093/plankt/fbt008.
Article PubMed PubMed Central Google Scholar
Lohr JN, David P, Haag CR. Reduced lifespan and increased ageing driven by genetic drift in small populations. Evolution. 2014;68(9):2494–508. https://doi.org/10.1111/evo.12464.
Coggins BL, Pearson AC, Yampolsky LY. Does geographic variation in thermal tolerance in Daphnia represent trade-offs or conditional neutrality? J Therm Biol. 2021;98:102934. https://doi.org/10.1016/j.jtherbio.2021.102934.
Article PubMed CAS Google Scholar
Ukhueduan B, Schumpert C, Kim E, Dudycha JL, Patel RC. Relationship between oxidative stress and lifespan in Daphnia pulex. Sci Rep. 2022;12(1):2354. https://doi.org/10.1038/s41598-022-06279-4.
Article PubMed PubMed Central CAS Google Scholar
Yampolsky LY, Galimov YR. Evolutionary genetics of aging in Daphnia. Zhurn Obsch Biol. 2005;66(5):416–24.
Fontana L, Partridge L, Longo VD. Extending healthy life span—from yeast to humans. Science. 2010;328(5976):321–6. https://doi.org/10.1126/science.1172539.
Article PubMed PubMed Central CAS Google Scholar
Fontana L, Partridge L. Promoting health and longevity through diet: from model organisms to humans. Cell. 2015;161(1):106–18. https://doi.org/10.1016/j.cell.2015.02.020.
Article PubMed PubMed Central CAS Google Scholar
Wei M, Fabrizio P, Hu J, Ge H, Cheng C, Li L, Longo VD. Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet. 2008;4(1):e13. https://doi.org/10.1371/journal.pgen.0040013.
Article PubMed PubMed Central CAS Google Scholar
Kauffman AL, Ashraf JM, Corces-Zimmerman MR, Landis JN, Murphy CT. Insulin signaling and dietary restriction differentially influence the decline of learning and memory with age. PLoS Biol. 2010;8(5):e1000372. https://doi.org/10.1371/journal.pbio.1000372.
Comments (0)