Synaptic pruning genes networks in Alzheimer’s disease: correlations with neuropathology and cognitive decline

Knopman DS, Amieva H, Petersen RC, et al. Alzheimer disease. Nat Rev Dis Primers. 2021;7:33. https://doi.org/10.1038/s41572-021-00269-y.

Article  PubMed  PubMed Central  Google Scholar 

Wen L, Bi D, Shen Y. Complement-mediated synapse loss in Alzheimer’s disease: mechanisms and involvement of risk factors. Trends Neurosci. 2024;47:135–49. https://doi.org/10.1016/j.tins.2023.11.010.

Article  PubMed  CAS  Google Scholar 

Brucato FH, Benjamin DE (2020) Synaptic pruning in Alzheimer’s disease: role of the complement system. Glob J Med Res 20:. https://doi.org/10.34257/gjmrfvol20is6pg1

Geloso MC, D’Ambrosi N. Microglial pruning: relevance for synaptic dysfunction in multiple sclerosis and related experimental models. Cells. 2021;10:686. https://doi.org/10.3390/cells10030686.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chung W-S, Clarke LE, Wang GX, et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature. 2013;504:394–400. https://doi.org/10.1038/nature12776.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lehrman EK, Wilton DK, Litvina EY, et al. CD47 Protects synapses from excess microglia-mediated pruning during development. Neuron. 2018;100:120-134.e6. https://doi.org/10.1016/j.neuron.2018.09.017.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhu D, Montagne A, Zhao Z. Alzheimer’s pathogenic mechanisms and underlying sex difference. Cell Mol Life Sci. 2021;78:4907–20. https://doi.org/10.1007/s00018-021-03830-w.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kelkar NS, Goldberg BS, Dufloo J, et al (2023) Sex and species associated differences in complement-mediated immunity in humans and Rhesus macaques. bioRxiv 2023.10.23.563614. https://doi.org/10.1101/2023.10.23.563614

Neuron-derived estrogen regulates synaptic plasticity and memory - PubMed. https://pubmed.ncbi.nlm.nih.gov/30728170/. Accessed 7 Apr 2025

Bordt EA, Ceasrine AM, Bilbo SD. Microglia and sexual differentiation of the developing brain: a focus on ontogeny and intrinsic factors. Glia. 2020;68:1085–99. https://doi.org/10.1002/glia.23753.

Article  PubMed  Google Scholar 

Synaptic remodeling during aging and in Alzheimer’s disease - PubMed. https://pubmed.ncbi.nlm.nih.gov/16914848/. Accessed 7 Apr 2025

Sakai J. Core Concept: How synaptic pruning shapes neural wiring during development and possibly, in disease. Proc Natl Acad Sci U S A. 2020;117:16096–9. https://doi.org/10.1073/pnas.2010281117.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Norden DM, Godbout JP. Review: microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol Appl Neurobiol. 2013;39:19–34. https://doi.org/10.1111/j.1365-2990.2012.01306.x.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Complement-mediated synapse loss in Alzheimer’s disease: mechanisms and involvement of risk factors - PubMed. https://pubmed.ncbi.nlm.nih.gov/38129195/. Accessed 7 Apr 2025

Gomez-Arboledas A, Acharya MM, Tenner AJ. The role of complement in synaptic pruning and neurodegeneration. Immunotargets Ther. 2021;10:373–86. https://doi.org/10.2147/ITT.S305420.

Article  PubMed  PubMed Central  Google Scholar 

Samborska V, Butler JL, Walton ME, et al. Complementary task representations in hippocampus and prefrontal cortex for generalizing the structure of problems. Nat Neurosci. 2022;25:1314–26. https://doi.org/10.1038/s41593-022-01149-8.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Clough E, Barrett T. The gene expression omnibus database. Methods Mol Biol. 2016;1418:93–110. https://doi.org/10.1007/978-1-4939-3578-9_5.

Article  PubMed  PubMed Central  Google Scholar 

Sanfilippo C, Giuliano L, Castrogiovanni P, et al. Sex, age, and regional differences in CHRM1 and CHRM3 genes expression levels in the human brain biopsies: potential targets for Alzheimer’s disease-related sleep disturbances. Curr Neuropharmacol. 2023;21:740–60. https://doi.org/10.2174/1570159X21666221207091209.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sjöstedt E, Zhong W, Fagerberg L, et al (2020) An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 367:eaay5947. https://doi.org/10.1126/science.aay5947

Thul PJ, Åkesson L, Wiking M, et al (2017) A subcellular map of the human proteome. Science 356:eaal3321. https://doi.org/10.1126/science.aal3321

Uhlen M, Zhang C, Lee S, et al (2017) A pathology atlas of the human cancer transcriptome. Science 357:eaan2507. https://doi.org/10.1126/science.aan2507

Castrogiovanni P, Barbagallo I, Imbesi R, et al. Chitinase domain containing 1 increase is associated with low survival rate and M0 macrophages infiltrates in colorectal cancer patients. Pathol Res Pract. 2022;237:154038. https://doi.org/10.1016/j.prp.2022.154038.

Article  PubMed  CAS  Google Scholar 

Di Rosa M, Di Cataldo A, Broggi G, et al. Resistin-like beta reduction is associated to low survival rate and is downregulated by adjuvant therapy in colorectal cancer patients. Sci Rep. 2023;13:1490. https://doi.org/10.1038/s41598-023-28450-1.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Care MA, Barrans S, Worrillow L, et al. A microarray platform-independent classification tool for cell of origin class allows comparative analysis of gene expression in diffuse large B-cell lymphoma. PLoS ONE. 2013;8:e55895. https://doi.org/10.1371/journal.pone.0055895.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cheadle C, Cho-Chung YS, Becker KG, Vawter MP. Application of z-score transformation to Affymetrix data. Appl Bioinformatics. 2003;2:209–17.

PubMed  CAS  Google Scholar 

Chen Q-R, Song YK, Wei JS, et al. An integrated cross-platform prognosis study on neuroblastoma patients. Genomics. 2008;92:195–203. https://doi.org/10.1016/j.ygeno.2008.05.014.

Article  PubMed  CAS  Google Scholar 

Feng C, Wu J, Yang F, et al. Expression of Bcl-2 is a favorable prognostic biomarker in lung squamous cell carcinoma. Oncol Lett. 2018;15:6925–30. https://doi.org/10.3892/ol.2018.8198.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kang C, Huo Y, Xin L, et al. Feature selection and tumor classification for microarray data using relaxed Lasso and generalized multi-class support vector machine. J Theor Biol. 2019;463:77–91. https://doi.org/10.1016/j.jtbi.2018.12.010.

Article  PubMed  CAS  Google Scholar 

Yasrebi H, Sperisen P, Praz V, Bucher P. Can survival prediction be improved by merging gene expression data sets? PLoS ONE. 2009;4:e7431. https://doi.org/10.1371/journal.pone.0007431.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Box GEP. Bayesian inference statistical analysis. 1st ed. New York: WILEY; 1992.

Book  Google Scholar 

Ohsawa K, Imai Y, Sasaki Y, Kohsaka S. Microglia/macrophage-specific protein Iba1 binds to fimbrin and enhances its actin-bundling activity. J Neurochem. 2004;88:844–56. https://doi.org/10.1046/j.1471-4159.2003.02213.x.

Article  PubMed  CAS  Google Scholar 

Beyond the GFAP-astrocyte protein markers in the brain - PubMed. https://pubmed.ncbi.nlm.nih.gov/34572572/. Accessed 7 Apr 2025

DeGiosio RA, Grubisha MJ, MacDonald ML, et al. More than a marker: potential pathogenic functions of MAP2. Front Mol Neurosci. 2022;15:974890. https://doi.org/10.3389/fnmol.2022.974890.

Article  PubMed  PubMed Central  CAS  Google Scholar 

von Bartheld CS, Bahney J, Herculano-Houzel S. The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J Comp Neurol. 2016;524:3865–95. https://doi.org/10.1002/cne.24040.

Article  Google Scholar 

Sarn N, Jaini R, Thacker S, et al. Cytoplasmic-predominant Pten increases microglial activation and synaptic pruning in a murine model with autism-like phenotype. Mol Psychiatry. 2021;26:1458–71. https://doi.org/10.1038/s41380-020-0681-0.

Comments (0)

No login
gif