Knopman DS, Amieva H, Petersen RC, et al. Alzheimer disease. Nat Rev Dis Primers. 2021;7:33. https://doi.org/10.1038/s41572-021-00269-y.
Article PubMed PubMed Central Google Scholar
Wen L, Bi D, Shen Y. Complement-mediated synapse loss in Alzheimer’s disease: mechanisms and involvement of risk factors. Trends Neurosci. 2024;47:135–49. https://doi.org/10.1016/j.tins.2023.11.010.
Article PubMed CAS Google Scholar
Brucato FH, Benjamin DE (2020) Synaptic pruning in Alzheimer’s disease: role of the complement system. Glob J Med Res 20:. https://doi.org/10.34257/gjmrfvol20is6pg1
Geloso MC, D’Ambrosi N. Microglial pruning: relevance for synaptic dysfunction in multiple sclerosis and related experimental models. Cells. 2021;10:686. https://doi.org/10.3390/cells10030686.
Article PubMed PubMed Central CAS Google Scholar
Chung W-S, Clarke LE, Wang GX, et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature. 2013;504:394–400. https://doi.org/10.1038/nature12776.
Article PubMed PubMed Central CAS Google Scholar
Lehrman EK, Wilton DK, Litvina EY, et al. CD47 Protects synapses from excess microglia-mediated pruning during development. Neuron. 2018;100:120-134.e6. https://doi.org/10.1016/j.neuron.2018.09.017.
Article PubMed PubMed Central CAS Google Scholar
Zhu D, Montagne A, Zhao Z. Alzheimer’s pathogenic mechanisms and underlying sex difference. Cell Mol Life Sci. 2021;78:4907–20. https://doi.org/10.1007/s00018-021-03830-w.
Article PubMed PubMed Central CAS Google Scholar
Kelkar NS, Goldberg BS, Dufloo J, et al (2023) Sex and species associated differences in complement-mediated immunity in humans and Rhesus macaques. bioRxiv 2023.10.23.563614. https://doi.org/10.1101/2023.10.23.563614
Neuron-derived estrogen regulates synaptic plasticity and memory - PubMed. https://pubmed.ncbi.nlm.nih.gov/30728170/. Accessed 7 Apr 2025
Bordt EA, Ceasrine AM, Bilbo SD. Microglia and sexual differentiation of the developing brain: a focus on ontogeny and intrinsic factors. Glia. 2020;68:1085–99. https://doi.org/10.1002/glia.23753.
Synaptic remodeling during aging and in Alzheimer’s disease - PubMed. https://pubmed.ncbi.nlm.nih.gov/16914848/. Accessed 7 Apr 2025
Sakai J. Core Concept: How synaptic pruning shapes neural wiring during development and possibly, in disease. Proc Natl Acad Sci U S A. 2020;117:16096–9. https://doi.org/10.1073/pnas.2010281117.
Article PubMed PubMed Central CAS Google Scholar
Norden DM, Godbout JP. Review: microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol Appl Neurobiol. 2013;39:19–34. https://doi.org/10.1111/j.1365-2990.2012.01306.x.
Article PubMed PubMed Central CAS Google Scholar
Complement-mediated synapse loss in Alzheimer’s disease: mechanisms and involvement of risk factors - PubMed. https://pubmed.ncbi.nlm.nih.gov/38129195/. Accessed 7 Apr 2025
Gomez-Arboledas A, Acharya MM, Tenner AJ. The role of complement in synaptic pruning and neurodegeneration. Immunotargets Ther. 2021;10:373–86. https://doi.org/10.2147/ITT.S305420.
Article PubMed PubMed Central Google Scholar
Samborska V, Butler JL, Walton ME, et al. Complementary task representations in hippocampus and prefrontal cortex for generalizing the structure of problems. Nat Neurosci. 2022;25:1314–26. https://doi.org/10.1038/s41593-022-01149-8.
Article PubMed PubMed Central CAS Google Scholar
Clough E, Barrett T. The gene expression omnibus database. Methods Mol Biol. 2016;1418:93–110. https://doi.org/10.1007/978-1-4939-3578-9_5.
Article PubMed PubMed Central Google Scholar
Sanfilippo C, Giuliano L, Castrogiovanni P, et al. Sex, age, and regional differences in CHRM1 and CHRM3 genes expression levels in the human brain biopsies: potential targets for Alzheimer’s disease-related sleep disturbances. Curr Neuropharmacol. 2023;21:740–60. https://doi.org/10.2174/1570159X21666221207091209.
Article PubMed PubMed Central CAS Google Scholar
Sjöstedt E, Zhong W, Fagerberg L, et al (2020) An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 367:eaay5947. https://doi.org/10.1126/science.aay5947
Thul PJ, Åkesson L, Wiking M, et al (2017) A subcellular map of the human proteome. Science 356:eaal3321. https://doi.org/10.1126/science.aal3321
Uhlen M, Zhang C, Lee S, et al (2017) A pathology atlas of the human cancer transcriptome. Science 357:eaan2507. https://doi.org/10.1126/science.aan2507
Castrogiovanni P, Barbagallo I, Imbesi R, et al. Chitinase domain containing 1 increase is associated with low survival rate and M0 macrophages infiltrates in colorectal cancer patients. Pathol Res Pract. 2022;237:154038. https://doi.org/10.1016/j.prp.2022.154038.
Article PubMed CAS Google Scholar
Di Rosa M, Di Cataldo A, Broggi G, et al. Resistin-like beta reduction is associated to low survival rate and is downregulated by adjuvant therapy in colorectal cancer patients. Sci Rep. 2023;13:1490. https://doi.org/10.1038/s41598-023-28450-1.
Article PubMed PubMed Central CAS Google Scholar
Care MA, Barrans S, Worrillow L, et al. A microarray platform-independent classification tool for cell of origin class allows comparative analysis of gene expression in diffuse large B-cell lymphoma. PLoS ONE. 2013;8:e55895. https://doi.org/10.1371/journal.pone.0055895.
Article PubMed PubMed Central CAS Google Scholar
Cheadle C, Cho-Chung YS, Becker KG, Vawter MP. Application of z-score transformation to Affymetrix data. Appl Bioinformatics. 2003;2:209–17.
Chen Q-R, Song YK, Wei JS, et al. An integrated cross-platform prognosis study on neuroblastoma patients. Genomics. 2008;92:195–203. https://doi.org/10.1016/j.ygeno.2008.05.014.
Article PubMed CAS Google Scholar
Feng C, Wu J, Yang F, et al. Expression of Bcl-2 is a favorable prognostic biomarker in lung squamous cell carcinoma. Oncol Lett. 2018;15:6925–30. https://doi.org/10.3892/ol.2018.8198.
Article PubMed PubMed Central CAS Google Scholar
Kang C, Huo Y, Xin L, et al. Feature selection and tumor classification for microarray data using relaxed Lasso and generalized multi-class support vector machine. J Theor Biol. 2019;463:77–91. https://doi.org/10.1016/j.jtbi.2018.12.010.
Article PubMed CAS Google Scholar
Yasrebi H, Sperisen P, Praz V, Bucher P. Can survival prediction be improved by merging gene expression data sets? PLoS ONE. 2009;4:e7431. https://doi.org/10.1371/journal.pone.0007431.
Article PubMed PubMed Central CAS Google Scholar
Box GEP. Bayesian inference statistical analysis. 1st ed. New York: WILEY; 1992.
Ohsawa K, Imai Y, Sasaki Y, Kohsaka S. Microglia/macrophage-specific protein Iba1 binds to fimbrin and enhances its actin-bundling activity. J Neurochem. 2004;88:844–56. https://doi.org/10.1046/j.1471-4159.2003.02213.x.
Article PubMed CAS Google Scholar
Beyond the GFAP-astrocyte protein markers in the brain - PubMed. https://pubmed.ncbi.nlm.nih.gov/34572572/. Accessed 7 Apr 2025
DeGiosio RA, Grubisha MJ, MacDonald ML, et al. More than a marker: potential pathogenic functions of MAP2. Front Mol Neurosci. 2022;15:974890. https://doi.org/10.3389/fnmol.2022.974890.
Article PubMed PubMed Central CAS Google Scholar
von Bartheld CS, Bahney J, Herculano-Houzel S. The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J Comp Neurol. 2016;524:3865–95. https://doi.org/10.1002/cne.24040.
Sarn N, Jaini R, Thacker S, et al. Cytoplasmic-predominant Pten increases microglial activation and synaptic pruning in a murine model with autism-like phenotype. Mol Psychiatry. 2021;26:1458–71. https://doi.org/10.1038/s41380-020-0681-0.
Comments (0)