Plasma p-tau231 and NfL differently associate with functional connectivity patterns in cognitively unimpaired individuals

Jack Jr CR, Andrews JS, Beach TG, Buracchio T, Dunn B, Graf A, ... Carrillo MC. Revised criteria for diagnosis and staging of Alzheimer’s disease: Alzheimer’s Association Workgroup. Alzheimer's & Dementia. 2024

Leuzy A, Mattsson-Carlgren N, Palmqvist S, Janelidze S, Dage JL, Hansson O. Blood-based biomarkers for Alzheimer’s disease. EMBO Mol Med. 2022;14(1):e14408.

Article  CAS  PubMed  Google Scholar 

Alzheimer’s Disease Neuroimaging Initiative, Hu H, Chen KL, Ou YN, Cao XP, Chen SD, et al. Neurofilament light chain plasma concentration predicts neurodegeneration and clinical progression in nondemented elderly adults. Aging. 2019;11(17):6904–14.

Ashton NJ, Pascoal TA, Karikari TK, Benedet AL, Lantero-Rodriguez J, Brinkmalm G, et al. Plasma p-tau231: a new biomarker for incipient Alzheimer’s disease pathology. Acta Neuropathol (Berl). 2021;141(5):709–24.

Article  CAS  PubMed  Google Scholar 

Ashton NJ, Benedet AL, Pascoal TA, Karikari TK, Lantero-Rodriguez J, Brum WS, et al. Cerebrospinal fluid p-tau231 as an early indicator of emerging pathology in Alzheimer’s disease. eBioMedicine. 2022;76:103836.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Milà-Alomà M, Ashton NJ, Shekari M, Salvadó G, Ortiz-Romero P, Montoliu-Gaya L, ... Blennow K. Plasma p-tau231 and p-tau217 as state markers of amyloid-β pathology in preclinical Alzheimer’s disease. Nat Med 2022;28(9):1797–1801.

Suárez-Calvet M, Karikari TK, Ashton NJ, Lantero Rodríguez J, Milà-Alomà M, Gispert JD, et al. Novel tau biomarkers phosphorylated at T181, T217 or T231 rise in the initial stages of the preclinical Alzheimer’s continuum when only subtle changes in Aβ pathology are detected. EMBO Mol Med. 2020;12(12):e12921.

Article  PubMed  PubMed Central  Google Scholar 

Tissot C, Therriault J, Kunach P, Benedet LA, Pascoal TA, Ashton NJ, et al. Comparing tau status determined via plasma pTau181, pTau231 and [18F]MK6240 tau-PET. eBioMedicine. 2022;76:103837.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lista S, Mapstone M, Caraci F, Emanuele E, López-Ortiz S, Martín-Hernández J, ... Imbimbo BP. A critical appraisal of blood-based biomarkers for Alzheimer’s disease. Ageing Res Rev, 2024;102290.

Mattsson N, Andreasson U, Zetterberg H, Blennow K, For the Alzheimer’s Disease Neuroimaging Initiative. Association of plasma neurofilament light with neurodegeneration in patients with Alzheimer disease. JAMA Neurol. 2017;74(5):557.

Article  PubMed  PubMed Central  Google Scholar 

Kang MS, Aliaga AA, Shin M, Mathotaarachchi S, Benedet AL, Pascoal TA, ... Alzheimer’s Disease Neuroimaging Initiative. Amyloid-beta modulates the association between neurofilament light chain and brain atrophy in Alzheimer’s disease. Molecular Psychiatry, 2021;26(10):5989–6001.

Maestú F, et al. Neuronal excitation/inhibition imbalance: core element of a translational perspective on Alzheimer pathophysiology. Ageing Res Rev. 2021;69:101372.

Article  PubMed  Google Scholar 

Smailovic U, Koenig T, Kåreholt I, Andersson T, Kramberger MG, Winblad B, Jelic V. Quantitative EEG power and synchronization correlate with Alzheimer’s disease CSF biomarkers. Neurobiol Aging. 2018;63:88–95.

Article  CAS  PubMed  Google Scholar 

Nakamura A, Cuesta P, Kato T, Arahata Y, Iwata K, Yamagishi M, ... Ito K. Early functional network alterations in asymptomatic elders at risk for Alzheimer’s disease. Sci Rep, 2017;7(1):6517.

Schultz AP, Chhatwal JP, Hedden T, Mormino EC, Hanseeuw BJ, Sepulcre J, et al. Phases of hyperconnectivity and hypoconnectivity in the default mode and salience networks track with amyloid and Tau in clinically normal individuals. J Neurosci. 2017;37(16):4323–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sepulcre J, Sabuncu MR, Li Q, El Fakhri G, Sperling R, Johnson KA. Tau and amyloid β proteins distinctively associate to functional network changes in the aging brain. Alzheimers Dement. 2017;13(11):1261–9. https://doi.org/10.1016/j.jalz.2017.02.011.

Article  PubMed  Google Scholar 

Sheline YI, Raichle ME, Snyder AZ, et al. Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biol Psychiatry. 2010;67:584–7.

Article  CAS  PubMed  Google Scholar 

Sperling RA, LaViolette PS, O'Keefe K, O'Brien J, Rentz DM, Pihlajamaki M, ... Johnson KA. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron, 2009;63(2):178–188.

López-Sanz D, Bruña R, Garcés P, Martín-Buro MC, Walter S, Delgado ML, ... Maestú F. Functional connectivity disruption in subjective cognitive decline and mild cognitive impairment: a common pattern of alterations. Front Aging Neurosci, 2017;9:109.

Maestú F, Peña JM, Garcés P, González S, Bajo R, Bagic A, ... Becker JT. A multicenter study of the early detection of synaptic dysfunction in mild cognitive impairment using magnetoencephalography-derived functional connectivity. NeuroImage: Clinical, 2015;9:103–109.

Zhang HY, Wang SJ, Liu B, Ma ZL, Yang M, Zhang ZJ, Teng GJ. Resting brain connectivity: changes during the progress of Alzheimer disease. Radiology. 2010;256(2):598–606.

Article  PubMed  Google Scholar 

Palmqvist S, Schöll M, Strandberg O, Mattsson N, Stomrud E, Zetterberg H, et al. Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat Commun. 2017;8(1):1214.

Article  PubMed  PubMed Central  Google Scholar 

Quevenco FC, Van Bergen JM, Treyer V, Studer ST, Kagerer SM, Meyer R, ... Unschuld PG. Functional brain network connectivity patterns associated with normal cognition at old-age, local β-amyloid, tau, and APOE4. Front Aging Neurosci, 2020;12:46.

García-Colomo A, Nebreda A, Carrasco-Gómez M, de Frutos-Lucas J, Ramirez-Toraño F, Spuch C, ... Maestú F. Longitudinal changes in the functional connectivity of individuals at risk of Alzheimer’s disease. GeroScience, 2024;46(3):2989–3003.

García-Colomo A, López-Sanz D, Taguas I, Carrasco-Gómez M, Spuch C, Comis-Tuche M, Maestú F. Effects of Alzheimer’s disease plasma marker levels on multilayer centrality in healthy individuals. Alzheimer’s Res Ther. 2025;17(1):8.

Article  Google Scholar 

García-Colomo A, López-Sanz D, Stam CJ, Hillebrand A, Carrasco-Gómez M, Spuch C, ... Maestú F. Minimum spanning tree analysis of unimpaired individuals at risk of Alzheimer’s disease. Brain Communications, 2024;6(5):fcae283.

Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, ... Chertkow H. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatrics Soc, 2005;53(4):695–699.

Reitan R. Validity of the Trail Making test as an indicator of organic brain damage. Percept Mot Skills. 1958;8:271–6.

Article  Google Scholar 

Wechsler D. WMS-III. Wechsler memory scale. 3rd ed. San Antonio, TX: Psychological Corporation; 1997.

Google Scholar 

Osterrieth PA. Le test de copie d'une figure complexe; contribution a l'etude de la perception et de la memoire. Archives de psychologie. 1944

Taulu S, Simola J. Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Phys Med Biol. 2006;51(7):1759–68.

Article  CAS  PubMed  Google Scholar 

Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011;2011:1–9.

Article  Google Scholar 

Garcés P, López-Sanz D, Maestú F, Pereda E. Choice of magnetometers and gradiometers after signal space separation. Sensors. 2017;17(12):2926.

Article  PubMed  PubMed Central  Google Scholar 

Friston KJ. Statistical parametric mapping: the analysis of functional brain images. 1st ed. Amsterdam Boston: Elsevier / Academic Press; 2007.

Google Scholar 

Rolls ET, Huang CC, Lin CP, Feng J, Joliot M. Automated anatomical labelling atlas 3. Neuroimage. 2020;206:116189.

Article  PubMed  Google Scholar 

Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK. Large-scale cortical correlation structure of spontaneous oscillatory activity. Nat Neurosci. 2012;15(6):884–90. https://doi.org/10.1038/nn.3101.

Article  CAS  PubMed  Google Scholar 

Schoonhoven DN, Briels CT, Hillebrand A, Scheltens P, Stam CJ, Gouw AA. Sensitive and reproducible MEG resting-state metrics of functional connectivity in Alzheimer’s disease. Alzheimers Res Ther. 2022;14(1):38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maris E, Oostenveld R. Nonparametric statistical testing of EEG-and MEG-data. J Neurosci Methods. 2007;164(1):177–90.

Article  PubMed  Google Scholar 

Zott B, Simon MM, Hong W, Unger F, Chen-Engerer HJ, Frosch, MP, ... Konnerth A. A vicious cycle of β amyloid–dependent neuronal hyperactivation. Science, 2019;365(6453):559–565.

Menon V. 20 years of the default mode network: a review and synthesis. Neuron. 2023;111(16):2469–87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taguas I, Doval S, Maestú F, López-Sanz D. Toward a more comprehensive understanding of network centrality disruption in amnestic mild cognitive impairment: a MEG multilayer approach. Alzheimer’s Research & Therapy. 2024;16(1):216.

Article  Google Scholar 

Stam CJ. Modern network science of neurological disorders. Nat Rev Neurosci. 2014;15(10):683–95.

Article  CAS  PubMed  Google Scholar 

De Haan W, Mott K, Van Straaten ECW, Scheltens P, Stam CJ. Activity dependent degeneration explains hub vulnerability in Alzheimer’s disease. In: Sporns O, editor. PLoS Comput Biol. 2012;8(8):e1002582.

López ME, Cuesta P, Garcés P, Castellanos PN, Aurtenetxe S, Bajo R, ... Fernandez A. MEG spectral analysis in subtypes of mild cognitive impairment. Age 2014;36:095–1112.

Moretti DV, Babiloni C, Binetti G, Cassetta E, Dal Forno G, Ferreric F, ... Rossini PM. Individual analysis of EEG frequency and band power in mild Alzheimer’s disease. Clin Neurophysiol, 2004;115(2):299–308.

Ranasinghe KG, Cha J, Iaccarino L, Hinkley LB, Beagle AJ, Pham J, ... Nagarajan SS. Neurophysiological signatures in Alzheimer’s disease are distinctly associated with tau, amyloid-β accumulation, and cognitive decline. Sci Transl Med, 2020;12(534):eaaz4069.

Gallego-Rudolf J, Wiesman AI, Pichet Binette A, Villeneuve S, Baillet S, PREVENT-AD Research Group. Synergistic association of Aβ and tau pathology with cortical neurophysiology and cognitive decline in asymptomatic older adults. Nat Neurosci, 2024;1–8.

Nakamura A, Cuesta P, Fernández A, Arahata Y, Iwata K, Kuratsubo I, ... Kato T. Electromagnetic signatures of the preclinical and prodromal stages of Alzheimer’s disease. Brain, 2018;141(5):1470–1485.

Ramírez-Toraño F, Bruña R, de Frutos-Lucas J, Rodríguez-Rojo IC, Marcos de Pedro S, Delgado-Losada ML, ... Maestú F. Functional connectivity hypersynchronization in relatives of Alzheimer’s disease patients: an early E/I balance dysfunction?. Cerebral Cortex, 2021;31(2):1201–1210.

López ME, Bruna R, Aurtenetxe S, Pineda-Pardo JÁ, Marcos A, Arrazola J, ... Maestú F. Alpha-band hypersynchronization in progressive mild cognitive impairment: a magnetoencephalography study. J Neurosci, 2014;34(44):14551–14559.

Pusil S, López ME, Cuesta P, Bruna R, Pereda E, Maestu F. Hypersynchronization in mild cognitive impairment: the ‘X’model. Brain. 2019;142(12):3936–50.

Article  PubMed  Google Scholar 

Canuet L, Pusil S, López ME, Bajo R, Pineda-Pardo JÁ, Cuesta P, ... Maestú F. Network disruption and cerebrospinal fluid amyloid-beta and phospho-tau levels in mild cognitive impairment. J Neurosci, 2015;35(28):10325–10330.

Busche MA, Wegmann S, Dujardin S, Commins C, Schiantarelli J, Klickstein N, ... Hyman BT. Tau impairs neural circuits, dominating amyloid-β effects, in Alzheimer models in vivo. Nat Neurosci, 2019;22(1), 57–64.

Comments (0)

No login
gif