2021 Alzheimer’s disease facts and figures. Alzheimers Dement. 2021;17(3):327–406.
Chang CW, Shao E, Mucke L, Tau. Enabler of diverse brain disorders and target of rapidly evolving therapeutic strategies. Science. 2021;371(6532).
Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature. 2018;562(7728):578–82.
Article CAS PubMed PubMed Central Google Scholar
Choi I, Wang M, Yoo S, Xu P, Seegobin SP, Li X, et al. Autophagy enables microglia to engage amyloid plaques and prevents microglial senescence. Nat Cell Biol. 2023;25(7):963–74.
Article CAS PubMed PubMed Central Google Scholar
Dorigatti AO, Riordan R, Yu Z, Ross G, Wang R, Reynolds-Lallement N, et al. Brain cellular senescence in mouse models of Alzheimer’s disease. Geroscience. 2022;44(2):1157–68.
Article PubMed PubMed Central Google Scholar
Musi N, Valentine JM, Sickora KR, Baeuerle E, Thompson CS, Shen Q, et al. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell. 2018;17(6):e12840.
Article PubMed PubMed Central Google Scholar
Childs BG, Baker DJ, Kirkland JL, Campisi J, van Deursen JM. Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep. 2014;15(11):1139–53.
Article CAS PubMed PubMed Central Google Scholar
Zhang L, Pitcher LE, Prahalad V, Niedernhofer LJ, Robbins PD. Targeting cellular senescence with senotherapeutics: senolytics and senomorphics. Febs j. 2023;290(5):1362–83.
Article CAS PubMed Google Scholar
Nayak D, Roth TL, McGavern DB. Microglia development and function. Annu Rev Immunol. 2014;32:367–402.
Article CAS PubMed PubMed Central Google Scholar
Hopp SC, Lin Y, Oakley D, Roe AD, DeVos SL, Hanlon D, et al. The role of microglia in processing and spreading of bioactive tau seeds in Alzheimer’s disease. J Neuroinflammation. 2018;15(1):269.
Article PubMed PubMed Central Google Scholar
Thangaraj A, Chivero ET, Tripathi A, Singh S, Niu F, Guo ML, et al. HIV TAT-mediated microglial senescence: role of SIRT3-dependent mitochondrial oxidative stress. Redox Biol. 2021;40:101843.
Article CAS PubMed Google Scholar
Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463–8.
Article PubMed PubMed Central Google Scholar
Lourenco MV, Frozza RL, de Freitas GB, Zhang H, Kincheski GC, Ribeiro FC, et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat Med. 2019;25(1):165–75.
Article CAS PubMed PubMed Central Google Scholar
Ruan Q, Zhang L, Ruan J, Zhang X, Chen J, Ma C, et al. Detection and quantitation of irisin in human cerebrospinal fluid by tandem mass spectrometry. Peptides. 2018;103:60–4.
Article CAS PubMed Google Scholar
Varela-Rodríguez BM, Pena-Bello L, Juiz-Valiña P, Vidal-Bretal B, Cordido F, Sangiao-Alvarellos S. FNDC5 expression and circulating irisin levels are modified by diet and hormonal conditions in hypothalamus, adipose tissue and muscle. Sci Rep. 2016;6:29898.
Article PubMed PubMed Central Google Scholar
Wrann CD, White JP, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D, et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 2013;18(5):649–59.
Article CAS PubMed PubMed Central Google Scholar
Islam MR, Valaris S, Young MF, Haley EB, Luo R, Bond SF, et al. Exercise hormone irisin is a critical regulator of cognitive function. Nat Metab. 2021;3(8):1058–70.
Article CAS PubMed PubMed Central Google Scholar
Lourenco MV, de Freitas GB, Raony Í, Ferreira ST, De Felice FG. Irisin stimulates protective signaling pathways in rat hippocampal neurons. Front Cell Neurosci. 2022;16:953991.
Article CAS PubMed PubMed Central Google Scholar
Bretland KA, Lin L, Bretland KM, Smith MA, Fleming SM, Dengler-Crish CM. Irisin treatment lowers levels of phosphorylated tau in the hippocampus of pre-symptomatic female but not male htau mice. Neuropathol Appl Neurobiol. 2021;47(7):967–78.
Article CAS PubMed PubMed Central Google Scholar
Chi C, Fu H, Li YH, Zhang GY, Zeng FY, Ji QX, et al. Exerkine fibronectin type-III domain-containing protein 5/irisin-enriched extracellular vesicles delay vascular ageing by increasing SIRT6 stability. Eur Heart J. 2022;43(43):4579–95.
Article CAS PubMed Google Scholar
Hu C, Zhang X, Hu M, Teng T, Yuan YP, Song P, et al. Fibronectin type III domain-containing 5 improves aging-related cardiac dysfunction in mice. Aging Cell. 2022;21(3):e13556.
Article CAS PubMed PubMed Central Google Scholar
Zhou W, Shi Y, Wang H, Chen L, Yu C, Zhang X, et al. Exercise-induced FNDC5/irisin protects nucleus pulposus cells against senescence and apoptosis by activating autophagy. Exp Mol Med. 2022;54(7):1038–48.
Article CAS PubMed PubMed Central Google Scholar
Chang Y, Yao Y, Ma R, Wang Z, Hu J, Wu Y, et al. Dl-3-n-Butylphthalide reduces cognitive deficits and alleviates neuropathology in P301S tau transgenic mice. Front Neurosci. 2021;15:620176.
Article PubMed PubMed Central Google Scholar
Yan M, Tang L, Dai L, Lei C, Xiong M, Zhang X, et al. Cofilin promotes tau pathology in Alzheimer’s disease. Cell Rep. 2023;42(2):112138.
Article CAS PubMed Google Scholar
Gaikwad S, Puangmalai N, Bittar A, Montalbano M, Garcia S, McAllen S, et al. Tau oligomer induced HMGB1 release contributes to cellular senescence and neuropathology linked to Alzheimer’s disease and frontotemporal dementia. Cell Rep. 2021;36(3):109419.
Article CAS PubMed PubMed Central Google Scholar
Wang P, Ye Y. Filamentous recombinant human tau activates primary astrocytes via an integrin receptor complex. Nat Commun. 2021;12(1):95.
Article CAS PubMed PubMed Central Google Scholar
Li Y, Lu J, Hou Y, Huang S, Pei G. Alzheimer’s Amyloid-β accelerates human neuronal cell senescence which could be rescued by Sirtuin-1 and aspirin. Front Cell Neurosci. 2022;16:906270.
Article CAS PubMed PubMed Central Google Scholar
Baik SH, Kang S, Lee W, Choi H, Chung S, Kim JI, et al. A breakdown in metabolic reprogramming causes Microglia Dysfunction in Alzheimer’s Disease. Cell Metab. 2019;30(3):493–e5076.
Article CAS PubMed Google Scholar
Bowen C, Childers G, Perry C, Martin N, McPherson CA, Lauten T, et al. Mitochondrial-related effects of pentabromophenol, tetrabromobisphenol A, and triphenyl phosphate on murine BV-2 microglia cells. Chemosphere. 2020;255:126919.
Article CAS PubMed PubMed Central Google Scholar
Gong L, Gong H, Pan X, Chang C, Ou Z, Ye S, et al. p53 isoform ∆113p53/∆133p53 promotes DNA double-strand break repair to protect cell from death and senescence in response to DNA damage. Cell Res. 2015;25(3):351–69.
Article CAS PubMed PubMed Central Google Scholar
Wang C, Chang Y, Zhu J, Wu Y, Jiang X, Zheng S, et al. AdipoRon mitigates tau pathology and restores mitochondrial dynamics via AMPK-related pathway in a mouse model of Alzheimer’s disease. Exp Neurol. 2023;363:114355.
Article CAS PubMed Google Scholar
Albert M, Mairet-Coello G, Danis C, Lieger S, Caillierez R, Carrier S, et al. Prevention of tau seeding and propagation by immunotherapy with a central tau epitope antibody. Brain. 2019;142(6):1736–50.
Article PubMed PubMed Central Google Scholar
Rauch JN, Luna G, Guzman E, Audouard M, Challis C, Sibih YE, et al. LRP1 is a master regulator of tau uptake and spread. Nature. 2020;580(7803):381–5.
Article CAS PubMed PubMed Central Google Scholar
Xiao S, Lu Y, Wu Q, Yang J, Chen J, Zhong S, et al. Fisetin inhibits tau aggregation by interacting with the protein and preventing the formation of β-strands. Int J Biol Macromol. 2021;178:381–93.
Article CAS PubMed PubMed Central Google Scholar
Karabag D, Scheiblich H, Griep A, Santarelli F, Schwartz S, Heneka MT, et al. Characterizing microglial senescence: Tau as a key player. J Neurochem. 2023;166(3):517–33.
Comments (0)