Veselinyová D, Mašlanková J, Kalinová K, Mičková H, Mareková M, Rabajdová M. Selected in situ hybridization methods: principles and application. Molecules. 2021;26:3874.
Article PubMed PubMed Central Google Scholar
Young AP, Jackson DJ, Wyeth RC. A technical review and guide to RNA fluorescence in situ hybridization. PeerJ. 2020;8:e8806.
Article PubMed PubMed Central Google Scholar
Choi HMT, Chang JY, Trinh LA, Padilla JE, Fraser SE, Pierce NA. Programmable in situ amplification for multiplexed imaging of mRNA expression. Nat Biotechnol. 2010;28:1208–12.
Article CAS PubMed PubMed Central Google Scholar
Choi HMT, Beck VA, Pierce NA. Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durability. ACS Nano. 2014;8:4284–94.
Article CAS PubMed PubMed Central Google Scholar
Choi HMT, Schwarzkopf M, Fornace ME, Acharya A, Artavanis G, Stegmaier J, et al. Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. Development. 2018;145:dev165753.
Article PubMed PubMed Central Google Scholar
Kim DW, Place E, Chinnaiya K, Manning E, Sun C, Dai W, et al. Single-cell analysis of early chick hypothalamic development reveals that hypothalamic cells are induced from prethalamic-like progenitors. Cell Rep. 2022;38:110251.
Article CAS PubMed PubMed Central Google Scholar
Williams RM, Lukoseviciute M, Sauka-Spengler T, Bronner ME. Single-cell atlas of early chick development reveals gradual segregation of neural crest lineage from the neural plate border during neurulation. eLife. 2022;11:e74464.
Article CAS PubMed PubMed Central Google Scholar
Choi HMT, Calvert CR, Husain N, Huss D, Barsi JC, Deverman BE, et al. Mapping a multiplexed zoo of mRNA expression. Development. 2016;143:3632–7.
Article CAS PubMed PubMed Central Google Scholar
Elagoz AM, Styfhals R, Maccuro S, Masin L, Moons L, Seuntjens E. Optimization of whole mount RNA multiplexed in situ hybridization chain reaction with immunohistochemistry, clearing and imaging to visualize octopus embryonic neurogenesis. Front Physiol. 2022;13:882413.
Article PubMed PubMed Central Google Scholar
Huss D, Choi HMT, Readhead C, Fraser SE, Pierce NA, Lansford R. Combinatorial analysis of mRNA expression patterns in mouse embryos using hybridization chain reaction. Cold Spring Harb Protoc. 2015;2015:pdb.prot083832.
Kramer EE, Steadman PE, Epp JR, Frankland PW, Josselyn SA. Assessing individual neuronal activity across the intact brain: using hybridization chain reaction (HCR) to detect Arc mRNA localized to the nucleus in volumes of cleared brain tissue. Curr Protoc Neurosci. 2018;84:e49.
Ling ITC, Sauka-Spengler T. Early chromatin shaping predetermines multipotent vagal neural crest into neural, neuronal and mesenchymal lineages. Nat Cell Biol. 2019;21:1504–17.
Article CAS PubMed PubMed Central Google Scholar
Trivedi V, Choi HMT, Fraser SE, Pierce NA. Multidimensional quantitative analysis of mRNA expression within intact vertebrate embryos. Development. 2018;145:dev156869.
Article PubMed PubMed Central Google Scholar
Galton R, Fejes-Toth K, Bronner ME. Co-option of the piRNA pathway to regulate neural crest specification. Sci Adv. 2022;8:eabn1441.
Article CAS PubMed PubMed Central Google Scholar
Miao Y, Djeffal Y, De Simone A, Zhu K, Lee JG, Lu Z, et al. Reconstruction and deconstruction of human somitogenesis in vitro. Nature. 2023;614:500–8.
Article CAS PubMed Google Scholar
Monroy BY, Adamson CJ, Camacho-Avila A, Guerzon CN, Echeverria CV, Rogers CD. Expression atlas of avian neural crest proteins: neurulation to migration. Dev Biol. 2022;483:39–57.
Article CAS PubMed PubMed Central Google Scholar
Pajanoja C, Hsin J, Olinger B, Schiffmacher A, Yazejian R, Abrams S, et al. Maintenance of pluripotency-like signature in the entire ectoderm leads to neural crest stem cell potential. Nat Commun. 2023;14:5941.
Chinnaiya K, Burbridge S, Jones A, Kim DW, Place E, Manning E, et al. A neuroepithelial wave of BMP signalling drives anteroposterior specification of the tuberal hypothalamus. eLife. 2023;12:e83133.
Article CAS PubMed PubMed Central Google Scholar
Belle M, Godefroy D, Dominici C, Heitz-Marchaland C, Zelina P, Hellal F, et al. A simple method for 3D analysis of immunolabeled axonal tracts in a transparent nervous system. Cell Rep. 2014;9:1191–201.
Article CAS PubMed Google Scholar
Kirst C, Skriabine S, Vieites-Prado A, Topilko T, Bertin P, Gerschenfeld G, et al. Mapping the fine-scale organization and plasticity of the brain vasculature. Cell. 2020;180:780–795.e25.
Article CAS PubMed Google Scholar
Kolesová H, Olejníčková V, Kvasilová A, Gregorovičová M, Sedmera D. Tissue clearing and imaging methods for cardiovascular development. iScience. 2021;24:102387.
Article PubMed PubMed Central Google Scholar
Moreno-Bravo JA, Roig Puiggros S, Mehlen P, Chédotal A. Synergistic activity of floor-plate- and ventricular-zone-derived netrin-1 in spinal cord commissural axon guidance. Neuron. 2019;101:625–634.e3.
Article CAS PubMed Google Scholar
Porter DDL, Morton PD. Clearing techniques for visualizing the nervous system in development, injury, and disease. J Neurosci Methods. 2020;334:108594.
Article PubMed PubMed Central Google Scholar
Vieites-Prado A, Renier N. Tissue clearing and 3D imaging in developmental biology. Development. 2021;148:dev199369.
Article CAS PubMed PubMed Central Google Scholar
Klingberg A, Hasenberg A, Ludwig-Portugall I, Medyukhina A, Männ L, Brenzel A, et al. Fully automated evaluation of total glomerular number and capillary tuft size in nephritic kidneys using lightsheet microscopy. J Am Soc Nephrol. 2017;28:452–9.
Article CAS PubMed Google Scholar
Giovannone D, Ortega B, Reyes M, El-Ghali N, Rabadi M, Sao S, et al. Chicken trunk neural crest migration visualized with HNK1. Acta Histochem. 2015;117:255–66.
Article CAS PubMed PubMed Central Google Scholar
Holmes G, Niswander L. Expression of slit-2 and slit-3 during chick development. Dev Dyn. 2001;222:301–7.
Article CAS PubMed Google Scholar
De Bellard ME, Rao Y, Bronner-Fraser M. Dual function of Slit2 in repulsion and enhanced migration of trunk, but not vagal, neural crest cells. J Cell Biol. 2003;162:269–79.
Article PubMed PubMed Central Google Scholar
Jia L, Cheng L, Raper J. Slit/Robo signaling is necessary to confine early neural crest cells to the ventral migratory pathway in the trunk. Dev Biol. 2005;282:411–21.
Article CAS PubMed Google Scholar
Hargrave M, Karunaratne A, Cox L, Wood S, Koopman P, Yamada T. The HMG box transcription factor gene Sox14 marks a novel subset of ventral interneurons and is regulated by sonic hedgehog. Dev Biol. 2000;219:142–53.
Comments (0)