Paterson JR. The trouble with trilobites: classification, phylogeny and the cryptogenesis problem. Geol Mag. 2020;157(1):35–46.
Buatois LA, Narbonne GM, Mángano MG, Carmona NB, Myrow P. Ediacaran matground ecology persisted into the earliest Cambrian. Nat Commun. 2014;5(1):3544.
Shu DG, Geyer G, Chen L, Zhang XL. Redlichiacean trilobites with preserved soft parts from the Lower Cambrian Chengjiang fauna South China. Beringeria Spec Issue. 1995;2:203–41.
Ramsköld L, Edgecombe GD. Trilobite appendage structure — Eoredlichia reconsidered. Alcheringa Australas J Palaeontol. 1996;20(4):269–76.
Chen J, Zhou G. The biology of the Chengjiang Fauna. Bull Natl Mus Nat Sci. 1997;10:11–105.
Hou XG, Bergström J. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Foss Strata. 1997;45:1–116.
Hu S, Zhu M, Luo H, Steiner M, Zhao F, Li G, et al. The Guanshan biota. Kunming: Yunnan Science and Technology Press; 2013.
Holmes JD, Paterson JR, García-Bellido DC. The trilobite Redlichia from the lower Cambrian Emu Bay Shale Konservat-Lagerstätte of South Australia: systematics, ontogeny and soft-part anatomy. J Syst Palaeontol. 2020;18(4):295–334.
El Albani A, Mazurier A, Edgecombe GD, Azizi A, El Bakhouch A, Berks HO, et al. Rapid volcanic ash entombment reveals the 3D anatomy of Cambrian trilobites. Science. 2024;384(6703):1429–35.
Whittington HB. Trilobites with appendages from the Middle Cambrian, Burgess Shale, British Columbia. Fossils Strata. 1975;4:97–136.
Losso SR, Ortega-Hernández J. Claspers in the mid-Cambrian Olenoides serratus indicate horseshoe crab–like mating in trilobites. Geology. 2022;50(8):897–901.
Dunbar CO. Antennae in Olenellus getzi n.sp. Am J Sci. 1925;5:303–8.
Martin ELO, Pittet B, Gutiérrez-Marco JC, Vannier J, El Hariri K, Lerosey-Aubril R, et al. The Lower Ordovician Fezouata Konservat-Lagerstätte from Morocco: age, environment and evolutionary perspectives. Gondwana Res. 2016;34:274–83.
Lefebvre B, Guensburg TE, Martin ELO, Mooi R, Nardin E, Nohejlová M, et al. Exceptionally preserved soft parts in fossils from the Lower Ordovician of Morocco clarify stylophoran affinities within basal deuterostomes. Geobios. 2019;52:27–36.
Pérez-Peris F, Laibl L, Vidal M, Daley A. Systematics, morphology, and appendages of Anacheirurus (Pilekiinae, Trilobita) from the Fezouata Shale and the early diversification of Cheiruridae. Acta Palaeontol Pol. 2021;66:857–77.
Losso SR, Ortega-Hernández J. Conserved exopodite morphology in three-dimensionally preserved trilobites from the Walcott-Rust Quarry (Mohawkian, Ordovician) of New York, USA. Arthropod Struct Dev. 2024;81:101371.
Beecher CE. Structure and appendages of Trinucleus. Am J Sci. 1895;3:307–3011.
Walcott CD. Cambrian geology and paleontology, IV, appendages of trilobites. Smithson Misc Collect. 1918;67:115–216.
Whittington HB, Almond JE. Appendages and habits of the Upper Ordovician trilobite Triarthrus eatoni. Philos Transit R Soc Lond. 1987;317:1–46.
Farrell ÚC, Martin MJ, Hagadorn JW, Whiteley T, Briggs DEG. Beyond Beecher’s trilobite bed: widespread pyritization of soft tissues in the late Ordovician Taconic foreland basin. Geology. 2009;37(10):907–10.
Hou JB, Hughes NC, Hopkins MJ. The trilobite upper limb branch is a well-developed gill. Sci Adv. 2021;7(eabe7377):1–8.
Siveter DJ, Fortey RA, Briggs DEG, Siveter DJ, Sutton MD. The first Silurian trilobite with three-dimensionally preserved soft parts reveals novel appendage morphology. Pap Palaeontol. 2021:7(4):2245-2253.
Stürmer W, Bergström J. New discoveries on trilobites by X-rays. Paläontol Z. 1973;47:104–41.
Bergstrom J, Brassel G. Legs in the trilobite Rhenops from the Lower Devonian Hunsrück Slate. Lethaia. 1984;17(1):67–72.
Bartels C, Briggs DEG, Brassel G. The fossils of the Hunsrück Slate : marine life in the Devonian. Cambridge: Cambridge University Press; 1998.
Bruton DL, Haas W. The anatomy and functional morphology of Phacops (Trilobita) from the Hunsrück Slate (Devonian). Palaeontogr Abt A. 1999;253(1–3):29–75.
Wyse GA, Dwyer NK. The neuromuscular basis of coxal feeding and locomotory movements in Limulus. Biol Bull. 1973;144(3):567–79.
Freire J, Sampedro M, González-Gurriarán E. Influence of morphometry and biomechanics on diet selection in three portunid crabs. Mar Ecol Prog Ser. 1996;137:111–21.
Vosatka ED. Observations on the swimming, righting, and burrowing movements of young horseshoe crabs, Limulus Polyphemus. Fossils Strata. 1970;70(5):276–83.
Hui CA. Walking of the shore crab Pachygrapsus Crassipes in its two natural environments. J Exp Biol. 1992;165(1):213–27.
Kwak B, Bae J. Locomotion of arthropods in aquatic environment and their applications in robotics. Bioinspir Biomim. 2018;13(4):041002.
Car C, Harvey M. A review of the Western Australian keeled millipede genus Boreohesperus (Diplopoda, Polydesmida, Paradoxosomatidae). ZooKeys. 2013;16(290):1–19.
Sigvardt ZMS, Rogers DC, Olesen J. Functional morphology of amplexus (clasping) in spinicaudatan clam shrimps (Crustacea, Branchiopoda) and its evolution in bivalved branchiopods: a video-based analysis. J Morphol. 2017;278(4):523–46.
Perkins MA, Williams BW, Russ WT. Cambarus franklini, a new crayfish (Decapoda: Cambaridae) from the Catawba River Basin in western North Carolina, USA. Zootaxa. 2019;4568(3):520.
Hallberg E, Skog M. Chemosensory sensilla in crustaceans. In: Breithaupt T, Thiel M, editors. Chemical communication in crustaceans. New York: Springer New York; 2010. p. 103–21. Available from: http://link.springer.com/10.1007/978-0-387-77101-4_6. Cited 2020 Mar 24.
Edgecombe GD, Fortey RA. A novel antennal form in trilobites. J Paleontol. 2023;97(1):152–7.
Boxshall GA, Jaume D. Exopodites, epipodites and gills in crustaceans. Arthropod Syst Phylogeny. 2009;67(2):229–54.
Bicknell RDC, Melzer RR, Schmidt M. Three-dimensional kinematics of euchelicerate limbs uncover functional specialization in eurypterid appendages. Biol J Linn Soc. 2022;135(1):174–83.
Esteve J, Rubio P. Understanding locomotion in trilobites by means of three-dimensional models. iScience. 2023;26(9):107512.
Bicknell RDC, Ledogar JA, Wroe S, Gutzler BC, Watson WH, Paterson JR. Computational biomechanical analyses demonstrate similar shell-crushing abilities in modern and ancient arthropods. Proc R Soc B Biol Sci. 2018;285(1889):20181935.
Bicknell RDC, Holmes JD, Edgecombe GD, Losso SR, Ortega-Hernández J, Wroe S, et al. Biomechanical analyses of Cambrian euarthropod limbs reveal their effectiveness in mastication and durophagy. Proc R Soc B Biol Sci. 2021;288:20202075.
Bicknell RDC, Schmidt M, Rahman IA, Edgecombe GD, Gutarra S, Daley AC, et al. Raptorial appendages of the Cambrian apex predator Anomalocaris canadensis are built for soft prey and speed. Proc R Soc B Biol Sci. 2023;290(2002):20230638.
Schmidt M, Liu Y, Zhai D, Hou X, Melzer RR. Moving legs: a workflow on how to generate a flexible endopod of the 518 million-year-old Chengjiang arthropod Ercaicunia multinodosa using 3D-kinematics (Cambrian, China). Microsc Res Tech. 2021;84(4):695–704.
Walcott CD. Cambrian geology and paleontology IV, notes on structure of Neolenus. Smithson Misc Collect. 1921;67:377–456.
Størmer L. Studies on trilobite morphology. Part I: the thoracic appendages and their phylogenetic significance. Nor Geol Tidsskr. 1939;19:143–274.
Fortey RA. Pelagic trilobites as an example of deducing the life habits of extinct arthropods. Earth Environ Sci Trans R Soc Edinb. 1985;76(2–3):219–30.
Zeng H, Zhao F, Yin Z, Zhu M. Appendages of an early Cambrian metadoxidid trilobite from Yunnan, SW China support mandibulate affinities of trilobites and artiopods. Geol Mag. 2017;154(06):1306–28.
Bergström J. Appendage morphology of the trilobite Cryptolithus and its implications. Lethaia. 1972;5(1):85–94.
Hall J. Descriptions of two species of trilobites belonging to the genus Paradoxides. J Sci. 1838;33:199–202.
Rominger C. Description of primordial fossils from Mount Stephens, N. W. Territory of Canada. Proc Acad Nat Sci Phila. 1887;39(1):12–9.
Hou JB, Hughes NC, Hopkins MJ. Gill grooming in middle Cambrian and Late Ordovician trilobites. Geol Mag. 2023:1–6.
Whittington HB. Exoskeleton, moult stage, appendage morphology, and habits of the Middle Cambrian Trilobite Olenoides serratus. Palaeontology. 1980;23(1):17–22.
Gaines RR. Burgess Shale-type preservation and its distribution in space and time. Paleontol Soc Pap. 2014;20:123–46.
Bath Enright OG, Minter NJ, Sumner EJ, Mángano MG, Buatois LA. Flume experiments reveal flows in the Burgess Shale can sample and transport organisms across substantial distances. Commun Earth Environ. 2021;2(104). Available from: http://www.nature.com/articles/s43247-021-00176-w. Cited 2021 Jun 2.
Paterson JR, Jago JB, Brock GA, Gehling JG. Taphonomy and palaeoecology of the emuellid trilobite Balcoracania dailyi (early Cambrian, South Australia). Palaeogeogr Palaeoclimatol Palaeoecol. 2007;249(3–4):302–21.
Bicknell RDC, Klinkhamer AJ, Flavel RJ, Wroe S, Paterson JR. A 3D anatomical atlas of appendage musculature in the chelicerate arthropod Limulus polyphemus. PLoS One. 2018;13(2):e0191400.
Boxshall GA. The evolution of arthropod limbs. Biol Rev. 2004;79(2):253–300.
Zhang XL, Shu DG, Erwin DH. Cambrian naraoiids (Arthropoda): morphology, ontogeny, systematics, and evolutionary relationships. J Paleontol. 2007;81(S68):1–52.
Briggs DEG, Siveter DJ, Siveter DJ, Sutton MD, Garwood RJ, Legg D. Silurian horseshoe crab illuminates the evolution of arthropod limbs. Proc Natl Acad Sci. 2012;109(39):15702–5.
Hou X, Clarkson ENK, Yang J, Zhang X, Wu G, Yuan Z. Appendages of early Cambrian Eoredlichia (Trilobita) from the Chengjiang biota, Yunnan, China. Earth Environ Sci Trans R Soc Edinb. 2008;99(3–4):213–23.
Seilacher A. Form und funktion des trilobiten-daktylus. Paläontol Z. 1962;36(S1):218–27.
Losso SR, Affatato P, Nanglu K, Ortega-Hernández J. Convergent evolution of ventral adaptations for enrolment in trilobites and extant euarthropods. Proc R Soc B Biol Sci. 2013;2023(290):20232212.
Fornshell JA. The mechanoreceptors of the trilobite larva of Limulus polyphemus (Linnaeus, 1758) (Merostomata: Xiphosurida: Limulidae). J Crustac Biol. 2021;41(1):ruab001.
Nirody JA. Flexible locomotion in complex environments: the influence of species, speed and sensory feedback on panarthropod inter-leg coordination. J Exp Biol. 2023;226(Suppl_1):jeb245111.
Grote JR. The effect of loaf on locomotion in crayfish. J Exp Biol. 1981;92:277–88.
Stachacz M, Rodríguez-Tovar FJ, Uchman A, Reolid M. Deep endichnial Cruziana from the Lower-Middle Ordovician of Spain — a unique trace fossil record of Trilobitomorph deep burrowing behavior. Ichnos. 2015;22(1):12–8.
Crimes TP. Trilobite tracks and other trace fossils from the Upper Cambrian of North Wales. Geol J. 1970;7(1):47–68.
Comments (0)