Quantification of leg mobility in the Burgess Shale Olenoides serratus indicates functional differences between trilobite and xiphosuran appendages

Paterson JR. The trouble with trilobites: classification, phylogeny and the cryptogenesis problem. Geol Mag. 2020;157(1):35–46.

CAS  Google Scholar 

Buatois LA, Narbonne GM, Mángano MG, Carmona NB, Myrow P. Ediacaran matground ecology persisted into the earliest Cambrian. Nat Commun. 2014;5(1):3544.

Google Scholar 

Shu DG, Geyer G, Chen L, Zhang XL. Redlichiacean trilobites with preserved soft parts from the Lower Cambrian Chengjiang fauna South China. Beringeria Spec Issue. 1995;2:203–41.

Google Scholar 

Ramsköld L, Edgecombe GD. Trilobite appendage structure — Eoredlichia reconsidered. Alcheringa Australas J Palaeontol. 1996;20(4):269–76.

Google Scholar 

Chen J, Zhou G. The biology of the Chengjiang Fauna. Bull Natl Mus Nat Sci. 1997;10:11–105.

Google Scholar 

Hou XG, Bergström J. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Foss Strata. 1997;45:1–116.

Google Scholar 

Hu S, Zhu M, Luo H, Steiner M, Zhao F, Li G, et al. The Guanshan biota. Kunming: Yunnan Science and Technology Press; 2013.

Google Scholar 

Holmes JD, Paterson JR, García-Bellido DC. The trilobite Redlichia from the lower Cambrian Emu Bay Shale Konservat-Lagerstätte of South Australia: systematics, ontogeny and soft-part anatomy. J Syst Palaeontol. 2020;18(4):295–334.

Google Scholar 

El Albani A, Mazurier A, Edgecombe GD, Azizi A, El Bakhouch A, Berks HO, et al. Rapid volcanic ash entombment reveals the 3D anatomy of Cambrian trilobites. Science. 2024;384(6703):1429–35.

Google Scholar 

Whittington HB. Trilobites with appendages from the Middle Cambrian, Burgess Shale, British Columbia. Fossils Strata. 1975;4:97–136.

Losso SR, Ortega-Hernández J. Claspers in the mid-Cambrian Olenoides serratus indicate horseshoe crab–like mating in trilobites. Geology. 2022;50(8):897–901.

Google Scholar 

Dunbar CO. Antennae in Olenellus getzi n.sp. Am J Sci. 1925;5:303–8.

Google Scholar 

Martin ELO, Pittet B, Gutiérrez-Marco JC, Vannier J, El Hariri K, Lerosey-Aubril R, et al. The Lower Ordovician Fezouata Konservat-Lagerstätte from Morocco: age, environment and evolutionary perspectives. Gondwana Res. 2016;34:274–83.

Google Scholar 

Lefebvre B, Guensburg TE, Martin ELO, Mooi R, Nardin E, Nohejlová M, et al. Exceptionally preserved soft parts in fossils from the Lower Ordovician of Morocco clarify stylophoran affinities within basal deuterostomes. Geobios. 2019;52:27–36.

Google Scholar 

Pérez-Peris F, Laibl L, Vidal M, Daley A. Systematics, morphology, and appendages of Anacheirurus (Pilekiinae, Trilobita) from the Fezouata Shale and the early diversification of Cheiruridae. Acta Palaeontol Pol. 2021;66:857–77.

Google Scholar 

Losso SR, Ortega-Hernández J. Conserved exopodite morphology in three-dimensionally preserved trilobites from the Walcott-Rust Quarry (Mohawkian, Ordovician) of New York, USA. Arthropod Struct Dev. 2024;81:101371.

Google Scholar 

Beecher CE. Structure and appendages of Trinucleus. Am J Sci. 1895;3:307–3011.

Google Scholar 

Walcott CD. Cambrian geology and paleontology, IV, appendages of trilobites. Smithson Misc Collect. 1918;67:115–216.

Google Scholar 

Whittington HB, Almond JE. Appendages and habits of the Upper Ordovician trilobite Triarthrus eatoni. Philos Transit R Soc Lond. 1987;317:1–46.

Google Scholar 

Farrell ÚC, Martin MJ, Hagadorn JW, Whiteley T, Briggs DEG. Beyond Beecher’s trilobite bed: widespread pyritization of soft tissues in the late Ordovician Taconic foreland basin. Geology. 2009;37(10):907–10.

Google Scholar 

Hou JB, Hughes NC, Hopkins MJ. The trilobite upper limb branch is a well-developed gill. Sci Adv. 2021;7(eabe7377):1–8.

Google Scholar 

Siveter DJ, Fortey RA, Briggs DEG, Siveter DJ, Sutton MD. The first Silurian trilobite with three-dimensionally preserved soft parts reveals novel appendage morphology. Pap Palaeontol. 2021:7(4):2245-2253.

Stürmer W, Bergström J. New discoveries on trilobites by X-rays. Paläontol Z. 1973;47:104–41.

Google Scholar 

Bergstrom J, Brassel G. Legs in the trilobite Rhenops from the Lower Devonian Hunsrück Slate. Lethaia. 1984;17(1):67–72.

Google Scholar 

Bartels C, Briggs DEG, Brassel G. The fossils of the Hunsrück Slate : marine life in the Devonian. Cambridge: Cambridge University Press; 1998.

Google Scholar 

Bruton DL, Haas W. The anatomy and functional morphology of Phacops (Trilobita) from the Hunsrück Slate (Devonian). Palaeontogr Abt A. 1999;253(1–3):29–75.

Google Scholar 

Wyse GA, Dwyer NK. The neuromuscular basis of coxal feeding and locomotory movements in Limulus. Biol Bull. 1973;144(3):567–79.

Google Scholar 

Freire J, Sampedro M, González-Gurriarán E. Influence of morphometry and biomechanics on diet selection in three portunid crabs. Mar Ecol Prog Ser. 1996;137:111–21.

Google Scholar 

Vosatka ED. Observations on the swimming, righting, and burrowing movements of young horseshoe crabs, Limulus Polyphemus. Fossils Strata. 1970;70(5):276–83.

Hui CA. Walking of the shore crab Pachygrapsus Crassipes in its two natural environments. J Exp Biol. 1992;165(1):213–27.

Google Scholar 

Kwak B, Bae J. Locomotion of arthropods in aquatic environment and their applications in robotics. Bioinspir Biomim. 2018;13(4):041002.

Google Scholar 

Car C, Harvey M. A review of the Western Australian keeled millipede genus Boreohesperus (Diplopoda, Polydesmida, Paradoxosomatidae). ZooKeys. 2013;16(290):1–19.

Google Scholar 

Sigvardt ZMS, Rogers DC, Olesen J. Functional morphology of amplexus (clasping) in spinicaudatan clam shrimps (Crustacea, Branchiopoda) and its evolution in bivalved branchiopods: a video-based analysis. J Morphol. 2017;278(4):523–46.

Google Scholar 

Perkins MA, Williams BW, Russ WT. Cambarus franklini, a new crayfish (Decapoda: Cambaridae) from the Catawba River Basin in western North Carolina, USA. Zootaxa. 2019;4568(3):520.

Google Scholar 

Hallberg E, Skog M. Chemosensory sensilla in crustaceans. In: Breithaupt T, Thiel M, editors. Chemical communication in crustaceans. New York: Springer New York; 2010. p. 103–21. Available from: http://link.springer.com/10.1007/978-0-387-77101-4_6. Cited 2020 Mar 24.

Edgecombe GD, Fortey RA. A novel antennal form in trilobites. J Paleontol. 2023;97(1):152–7.

Google Scholar 

Boxshall GA, Jaume D. Exopodites, epipodites and gills in crustaceans. Arthropod Syst Phylogeny. 2009;67(2):229–54.

Google Scholar 

Bicknell RDC, Melzer RR, Schmidt M. Three-dimensional kinematics of euchelicerate limbs uncover functional specialization in eurypterid appendages. Biol J Linn Soc. 2022;135(1):174–83.

Google Scholar 

Esteve J, Rubio P. Understanding locomotion in trilobites by means of three-dimensional models. iScience. 2023;26(9):107512.

Google Scholar 

Bicknell RDC, Ledogar JA, Wroe S, Gutzler BC, Watson WH, Paterson JR. Computational biomechanical analyses demonstrate similar shell-crushing abilities in modern and ancient arthropods. Proc R Soc B Biol Sci. 2018;285(1889):20181935.

Google Scholar 

Bicknell RDC, Holmes JD, Edgecombe GD, Losso SR, Ortega-Hernández J, Wroe S, et al. Biomechanical analyses of Cambrian euarthropod limbs reveal their effectiveness in mastication and durophagy. Proc R Soc B Biol Sci. 2021;288:20202075.

Google Scholar 

Bicknell RDC, Schmidt M, Rahman IA, Edgecombe GD, Gutarra S, Daley AC, et al. Raptorial appendages of the Cambrian apex predator Anomalocaris canadensis are built for soft prey and speed. Proc R Soc B Biol Sci. 2023;290(2002):20230638.

Google Scholar 

Schmidt M, Liu Y, Zhai D, Hou X, Melzer RR. Moving legs: a workflow on how to generate a flexible endopod of the 518 million-year-old Chengjiang arthropod Ercaicunia multinodosa using 3D-kinematics (Cambrian, China). Microsc Res Tech. 2021;84(4):695–704.

Google Scholar 

Walcott CD. Cambrian geology and paleontology IV, notes on structure of Neolenus. Smithson Misc Collect. 1921;67:377–456.

Google Scholar 

Størmer L. Studies on trilobite morphology. Part I: the thoracic appendages and their phylogenetic significance. Nor Geol Tidsskr. 1939;19:143–274.

Fortey RA. Pelagic trilobites as an example of deducing the life habits of extinct arthropods. Earth Environ Sci Trans R Soc Edinb. 1985;76(2–3):219–30.

Google Scholar 

Zeng H, Zhao F, Yin Z, Zhu M. Appendages of an early Cambrian metadoxidid trilobite from Yunnan, SW China support mandibulate affinities of trilobites and artiopods. Geol Mag. 2017;154(06):1306–28.

CAS  Google Scholar 

Bergström J. Appendage morphology of the trilobite Cryptolithus and its implications. Lethaia. 1972;5(1):85–94.

Google Scholar 

Hall J. Descriptions of two species of trilobites belonging to the genus Paradoxides. J Sci. 1838;33:199–202.

Google Scholar 

Rominger C. Description of primordial fossils from Mount Stephens, N. W. Territory of Canada. Proc Acad Nat Sci Phila. 1887;39(1):12–9.

Google Scholar 

Hou JB, Hughes NC, Hopkins MJ. Gill grooming in middle Cambrian and Late Ordovician trilobites. Geol Mag. 2023:1–6.

Whittington HB. Exoskeleton, moult stage, appendage morphology, and habits of the Middle Cambrian Trilobite Olenoides serratus. Palaeontology. 1980;23(1):17–22.

Google Scholar 

Gaines RR. Burgess Shale-type preservation and its distribution in space and time. Paleontol Soc Pap. 2014;20:123–46.

Google Scholar 

Bath Enright OG, Minter NJ, Sumner EJ, Mángano MG, Buatois LA. Flume experiments reveal flows in the Burgess Shale can sample and transport organisms across substantial distances. Commun Earth Environ. 2021;2(104). Available from: http://www.nature.com/articles/s43247-021-00176-w. Cited 2021 Jun 2.

Paterson JR, Jago JB, Brock GA, Gehling JG. Taphonomy and palaeoecology of the emuellid trilobite Balcoracania dailyi (early Cambrian, South Australia). Palaeogeogr Palaeoclimatol Palaeoecol. 2007;249(3–4):302–21.

Google Scholar 

Bicknell RDC, Klinkhamer AJ, Flavel RJ, Wroe S, Paterson JR. A 3D anatomical atlas of appendage musculature in the chelicerate arthropod Limulus polyphemus. PLoS One. 2018;13(2):e0191400.

Google Scholar 

Boxshall GA. The evolution of arthropod limbs. Biol Rev. 2004;79(2):253–300.

Google Scholar 

Zhang XL, Shu DG, Erwin DH. Cambrian naraoiids (Arthropoda): morphology, ontogeny, systematics, and evolutionary relationships. J Paleontol. 2007;81(S68):1–52.

Google Scholar 

Briggs DEG, Siveter DJ, Siveter DJ, Sutton MD, Garwood RJ, Legg D. Silurian horseshoe crab illuminates the evolution of arthropod limbs. Proc Natl Acad Sci. 2012;109(39):15702–5.

CAS  Google Scholar 

Hou X, Clarkson ENK, Yang J, Zhang X, Wu G, Yuan Z. Appendages of early Cambrian Eoredlichia (Trilobita) from the Chengjiang biota, Yunnan, China. Earth Environ Sci Trans R Soc Edinb. 2008;99(3–4):213–23.

Google Scholar 

Seilacher A. Form und funktion des trilobiten-daktylus. Paläontol Z. 1962;36(S1):218–27.

Google Scholar 

Losso SR, Affatato P, Nanglu K, Ortega-Hernández J. Convergent evolution of ventral adaptations for enrolment in trilobites and extant euarthropods. Proc R Soc B Biol Sci. 2013;2023(290):20232212.

Google Scholar 

Fornshell JA. The mechanoreceptors of the trilobite larva of Limulus polyphemus (Linnaeus, 1758) (Merostomata: Xiphosurida: Limulidae). J Crustac Biol. 2021;41(1):ruab001.

Google Scholar 

Nirody JA. Flexible locomotion in complex environments: the influence of species, speed and sensory feedback on panarthropod inter-leg coordination. J Exp Biol. 2023;226(Suppl_1):jeb245111.

Google Scholar 

Grote JR. The effect of loaf on locomotion in crayfish. J Exp Biol. 1981;92:277–88.

Google Scholar 

Stachacz M, Rodríguez-Tovar FJ, Uchman A, Reolid M. Deep endichnial Cruziana from the Lower-Middle Ordovician of Spain — a unique trace fossil record of Trilobitomorph deep burrowing behavior. Ichnos. 2015;22(1):12–8.

Google Scholar 

Crimes TP. Trilobite tracks and other trace fossils from the Upper Cambrian of North Wales. Geol J. 1970;7(1):47–68.

Comments (0)

No login
gif