Vasilev A, Sofi R, Rahman R, Smith SJ, Teschemacher AG, Kasparov S (2020) Using light for therapy of Glioblastoma Multiforme (GBM). Brain Sci 10. https://doi.org/10.3390/brainsci10020075
Sharifzad F, Ghavami S, Verdi J, Mardpour S, Mollapour Sisakht M, Azizi Z, Taghikhani A, Los MJ, Fakharian E, Ebrahimi M, Hamidieh AA (2019) Glioblastoma cancer stem cell biology: potential theranostic targets. Drug Resist Updat 42:35–45. https://doi.org/10.1016/j.drup.2018.03.003
Gangoso E, Southgate B, Bradley L, Rus S, Galvez-Cancino F, McGivern N, Guc E, Kapourani CA, Byron A, Ferguson KM, Alfazema N, Morrison G, Grant V, Blin C, Sou I, Marques-Torrejon MA, Conde L, Parrinello S, Herrero J, Beck S, Brandner S, Brennan PM, Bertone P, Pollard JW, Quezada SA, Sproul D, Frame MC, Serrels A, Pollard SM (2021) Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell 184:2454-2470 e2426. https://doi.org/10.1016/j.cell.2021.03.023
Article CAS PubMed PubMed Central Google Scholar
Ohue Y, Nishikawa H (2019) Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci 110:2080–2089. https://doi.org/10.1111/cas.14069
Article CAS PubMed PubMed Central Google Scholar
Cinier J, Hubert M, Besson L, Di Roio A, Rodriguez C, Lombardi V, Caux C, Menetrier-Caux C (2021) Recruitment and expansion of Tregs cells in the tumor environment-how to target them? Cancers (Basel) 13. https://doi.org/10.3390/cancers13081850
Trehanpati N, Vyas AK (2017) Immune regulation by T Regulatory cells in hepatitis B virus-related inflammation and cancer. Scand J Immunol 85:175–181. https://doi.org/10.1111/sji.12524
Article CAS PubMed Google Scholar
Jacobs JF, Idema AJ, Bol KF, Grotenhuis JA, de Vries IJ, Wesseling P, Adema GJ (2010) Prognostic significance and mechanism of Treg infiltration in human brain tumors. J Neuroimmunol 225:195–199. https://doi.org/10.1016/j.jneuroim.2010.05.020
Article CAS PubMed Google Scholar
Fecci PE, Mitchell DA, Whitesides JF, Xie W, Friedman AH, Archer GE, Herndon JE 2nd, Bigner DD, Dranoff G, Sampson JH (2006) Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res 66:3294–3302. https://doi.org/10.1158/0008-5472.CAN-05-3773
Article CAS PubMed Google Scholar
Wei J, Duramad O, Perng OA, Reiner SL, Liu YJ, Qin FX (2007) Antagonistic nature of T helper 1/2 developmental programs in opposing peripheral induction of Foxp3+ regulatory T cells. Proc Natl Acad Sci U S A 104: 18169-18174.https://doi.org/10.1073/pnas.0703642104
De Simone M, Arrigoni A, Rossetti G, Gruarin P, Ranzani V, Politano C, Bonnal RJP, Provasi E, Sarnicola ML, Panzeri I, Moro M, Crosti M, Mazzara S, Vaira V, Bosari S, Palleschi A, Santambrogio L, Bovo G, Zucchini N, Totis M, Gianotti L, Cesana G, Perego RA, Maroni N, Pisani Ceretti A, Opocher E, De Francesco R, Geginat J, Stunnenberg HG, Abrignani S, Pagani M (2016) Transcriptional landscape of human tissue lymphocytes unveils uniqueness of tumor-infiltrating T regulatory cells. Immunity 45:1135–1147. https://doi.org/10.1016/j.immuni.2016.10.021
Article CAS PubMed PubMed Central Google Scholar
Plitas G, Konopacki C, Wu K, Bos PD, Morrow M, Putintseva EV, Chudakov DM, Rudensky AY (2016) Regulatory T cells exhibit distinct features in human breast cancer. Immunity 45:1122–1134. https://doi.org/10.1016/j.immuni.2016.10.032
Article CAS PubMed PubMed Central Google Scholar
Wang L, Simons DL, Lu X, Tu TY, Solomon S, Wang R, Rosario A, Avalos C, Schmolze D, Yim J, Waisman J, Lee PP (2019) Connecting blood and intratumoral T(reg) cell activity in predicting future relapse in breast cancer. Nat Immunol 20:1220–1230. https://doi.org/10.1038/s41590-019-0429-7
Article CAS PubMed PubMed Central Google Scholar
Villarreal DO, L’Huillier A, Armington S, Mottershead C, Filippova EV, Coder BD, Petit RG, Princiotta MF (2018) Targeting CCR8 induces protective antitumor immunity and enhances vaccine-induced responses in colon cancer. Cancer Res 78:5340–5348. https://doi.org/10.1158/0008-5472.CAN-18-1119
Article CAS PubMed Google Scholar
Xu Y, Dong X, Qi P, Ye Y, Shen W, Leng L, Wang L, Li X, Luo X, Chen Y, Sun P, Xiang R, Li N (2017) Sox2 communicates with Tregs through CCL1 to promote the stemness property of breast cancer cells. Stem Cells 35:2351–2365. https://doi.org/10.1002/stem.2720
Article CAS PubMed Google Scholar
Jin JS, Tsao TY, Sun PC, Yu CP, Tzao C (2012) SAHA inhibits the growth of colon tumors by decreasing histone deacetylase and the expression of cyclin D1 and survivin. Pathol Oncol Res 18:713–720. https://doi.org/10.1007/s12253-012-9499-7
Article CAS PubMed Google Scholar
Li H, Wu X (2004) Histone deacetylase inhibitor, Trichostatin A, activates p21WAF1/CIP1 expression through downregulation of c-myc and release of the repression of c-myc from the promoter in human cervical cancer cells. Biochem Biophys Res Commun 324:860–867. https://doi.org/10.1016/j.bbrc.2004.09.130
Article CAS PubMed Google Scholar
Bhandari DR, Seo KW, Jung JW, Kim HS, Yang SR, Kang KS (2011) The regulatory role of c-MYC on HDAC2 and PcG expression in human multipotent stem cells. J Cell Mol Med 15:1603–1614. https://doi.org/10.1111/j.1582-4934.2010.01144.x
Article CAS PubMed PubMed Central Google Scholar
Ecker J, Oehme I, Mazitschek R, Korshunov A, Kool M, Hielscher T, Kiss J, Selt F, Konrad C, Lodrini M, Deubzer HE, von Deimling A, Kulozik AE, Pfister SM, Witt O, Milde T (2015) Targeting class I histone deacetylase 2 in MYC amplified group 3 medulloblastoma. Acta Neuropathol Commun 3:22. https://doi.org/10.1186/s40478-015-0201-7
Article CAS PubMed PubMed Central Google Scholar
Yang W, Li Y, Gao R, Xiu Z, Sun T (2020) MHC class I dysfunction of glioma stem cells escapes from CTL-mediated immune response via activation of Wnt/beta-catenin signaling pathway. Oncogene 39:1098–1111. https://doi.org/10.1038/s41388-019-1045-6
Article CAS PubMed Google Scholar
Shen L, Ciesielski M, Ramakrishnan S, Miles KM, Ellis L, Sotomayor P, Shrikant P, Fenstermaker R, Pili R (2012) Class I histone deacetylase inhibitor entinostat suppresses regulatory T cells and enhances immunotherapies in renal and prostate cancer models. PLoS One 7:e30815. https://doi.org/10.1371/journal.pone.0030815
Article CAS PubMed PubMed Central Google Scholar
Zhou YH, Chen Y, Hu Y, Yu L, Tran K, Giedzinski E, Ru N, Gau A, Pan F, Qiao J, Atkin N, Ly KC, Lee N, Siegel ER, Linskey ME, Wang P, Limoli C (2017) The role of EGFR double minutes in modulating the response of malignant gliomas to radiotherapy. Oncotarget 8:80853–80868. https://doi.org/10.18632/oncotarget.20714
Article PubMed PubMed Central Google Scholar
Li Y, Sun T, Chen Z, Shao Y, Huang Y, Zhou Y (2021) Characterization of a new human astrocytoma cell line SHG140: cell proliferation, cell phenotype, karyotype, STR markers and tumorigenicity analysis. J Cancer 12:371–378. https://doi.org/10.7150/jca.40802
Article CAS PubMed PubMed Central Google Scholar
Cao Y, Liu B, Cai L, Li Y, Huang Y, Zhou Y, Sun X, Yang W, Sun T (2023) G9a promotes immune suppression by targeting the Fbxw7/Notch pathway in glioma stem cells. CNS Neurosci Ther. https://doi.org/10.1111/cns.14191
Article PubMed PubMed Central Google Scholar
Barsheshet Y, Wildbaum G, Levy E, Vitenshtein A, Akinseye C, Griggs J, Lira SA, Karin N (2017) CCR8(+)FOXp3(+) T(reg) cells as master drivers of immune regulation. Proc Natl Acad Sci U S A 114:6086-6091https://doi.org/10.1073/pnas.1621280114
Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D (2020) Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol 20:7–24. https://doi.org/10.1038/s41577-019-0210-z
Article CAS PubMed Google Scholar
Kumagai T, Wakimoto N, Yin D, Gery S, Kawamata N, Takai N, Komatsu N, Chumakov A, Imai Y, Koeffler HP (2007) Histone deacetylase inhibitor, suberoylanilide hydroxamic acid (Vorinostat, SAHA) profoundly inhibits the growth of human pancreatic cancer cells. Int J Cancer 121:656–665. https://doi.org/10.1002/ijc.22558
Article CAS PubMed Google Scholar
Wherry EJ, Kurachi M (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15:486–499. https://doi.org/10.1038/nri3862
Comments (0)