Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B, Toms S, Idbaih A, Ahluwalia MS, Fink K, Di Meco F, Lieberman F, Zhu JJ, Stragliotto G, Tran D, Brem S, Hottinger A, Kirson ED, Lavy-Shahaf G, Weinberg U, Kim CY, Paek SH, Nicholas G, Bruna J, Hirte H, Weller M, Palti Y, Hegi ME, Ram Z (2017) Effect of Tumor-Treating Fields Plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a Randomized Clinical Trial. JAMA 318:2306–2316. https://doi.org/10.1001/jama.2017.18718
Article CAS PubMed PubMed Central Google Scholar
Okada H, Kohanbash G, Zhu X, Kastenhuber ER, Hoji A, Ueda R, Fujita M (2009) Immunotherapeutic approaches for glioma. Crit Rev Immunol 29:1–42. https://doi.org/10.1615/critrevimmunol.v29.i1.10
Article CAS PubMed PubMed Central Google Scholar
Park JH, Geyer MB, Brentjens RJ (2016) CD19-targeted CAR T-cell therapeutics for hematologic malignancies: interpreting clinical outcomes to date. Blood 127:3312–3320. https://doi.org/10.1182/blood-2016-02-629063
Article CAS PubMed PubMed Central Google Scholar
Hargadon KM, Johnson CE, Williams CJ (2018) Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol 62:29–39. https://doi.org/10.1016/j.intimp.2018.06.001
Article CAS PubMed Google Scholar
McGranahan T, Therkelsen KE, Ahmad S, Nagpal S (2019) Current state of Immunotherapy for treatment of Glioblastoma. Curr Treat Options Oncol 20:24. https://doi.org/10.1007/s11864-019-0619-4
Article PubMed PubMed Central Google Scholar
Nduom EK, Weller M, Heimberger AB (2015) Immunosuppressive mechanisms in glioblastoma. Neuro Oncol 17 Suppl 7:vii9–vii14. https://doi.org/10.1093/neuonc/nov151
Klemm F, Maas RR, Bowman RL, Kornete M, Soukup K, Nassiri S, Brouland JP, Iacobuzio-Donahue CA, Brennan C, Tabar V, Gutin PH, Daniel RT, Hegi ME, Joyce JA (2020) Interrogation of the Microenvironmental Landscape in Brain Tumors reveals Disease-specific alterations of Immune cells. Cell 181:1643–1660e1617. https://doi.org/10.1016/j.cell.2020.05.007
Article CAS PubMed PubMed Central Google Scholar
Wheeler LA, Manzanera AG, Bell SD, Cavaliere R, McGregor JM, Grecula JC, Newton HB, Lo SS, Badie B, Portnow J, Teh BS, Trask TW, Baskin DS, New PZ, Aguilar LK, Aguilar-Cordova E, Chiocca EA (2016) Phase II multicenter study of gene-mediated cytotoxic immunotherapy as adjuvant to surgical resection for newly diagnosed malignant glioma. Neuro Oncol 18:1137–1145. https://doi.org/10.1093/neuonc/now002
Article CAS PubMed PubMed Central Google Scholar
Chiocca EA, Smith KM, McKinney B, Palmer CA, Rosenfeld S, Lillehei K, Hamilton A, DeMasters BK, Judy K, Kirn D (2008) A phase I trial of Ad.hIFN-beta gene therapy for Glioma. Mol Ther 16:618–626. https://doi.org/10.1038/sj.mt.6300396
Article CAS PubMed Google Scholar
Chiocca EA, Aguilar LK, Bell SD, Kaur B, Hardcastle J, Cavaliere R, McGregor J, Lo S, Ray-Chaudhuri A, Chakravarti A, Grecula J, Newton H, Harris KS, Grossman RG, Trask TW, Baskin DS, Monterroso C, Manzanera AG, Aguilar-Cordova E, New PZ (2011) Phase IB study of gene-mediated cytotoxic immunotherapy adjuvant to up-front surgery and intensive timing radiation for malignant glioma. J Clin Oncol 29:3611–3619. https://doi.org/10.1200/JCO.2011.35.5222
Article CAS PubMed PubMed Central Google Scholar
Tugues S, Burkhard SH, Ohs I, Vrohlings M, Nussbaum K, Vom Berg J, Kulig P, Becher B (2015) New insights into IL-12-mediated tumor suppression. Cell Death Differ 22:237–246. https://doi.org/10.1038/cdd.2014.134
Article CAS PubMed Google Scholar
Lasek W, Zagozdzon R, Jakobisiak M (2014) Interleukin 12: still a promising candidate for tumor immunotherapy? Cancer Immunol Immunother 63:419–435. https://doi.org/10.1007/s00262-014-1523-1
Article CAS PubMed PubMed Central Google Scholar
Chiocca EA, Yu JS, Lukas RV, Solomon IH, Ligon KL, Nakashima H, Triggs DA, Reardon DA, Wen P, Stopa BM, Naik A, Rudnick J, Hu JL, Kumthekar P, Yamini B, Buck JY, Demars N, Barrett JA, Gelb AB, Zhou J, Lebel F, Cooper LJN (2019) Regulatable interleukin-12 gene therapy in patients with recurrent high-grade glioma: results of a phase 1 trial. Sci Transl Med 11. https://doi.org/10.1126/scitranslmed.aaw5680
Chiocca EA, Gelb AB, Chen CC, Rao G, Reardon DA, Wen PY, Bi WL, Peruzzi P, Amidei C, Triggs D, Seften L, Park G, Grant J, Truman K, Buck JY, Hadar N, Demars N, Miao J, Estupinan T, Loewy J, Chadha K, Tringali J, Cooper L, Lukas RV (2022) Combined immunotherapy with controlled interleukin-12 gene therapy and immune checkpoint blockade in recurrent glioblastoma: an open-label, multi-institutional phase I trial. Neuro Oncol 24:951–963. https://doi.org/10.1093/neuonc/noab271
Article CAS PubMed Google Scholar
Geisler S, Coller J (2013) RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol 14:699–712. https://doi.org/10.1038/nrm3679
Article CAS PubMed PubMed Central Google Scholar
Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, Gingeras TR, Guttman M, Hirose T, Huarte M, Johnson R, Kanduri C, Kapranov P, Lawrence JB, Lee JT, Mendell JT, Mercer TR, Moore KJ, Nakagawa S, Rinn JL, Spector DL, Ulitsky I, Wan Y, Wilusz JE, Wu M (2023) Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol 24:430–447. https://doi.org/10.1038/s41580-022-00566-8
Article CAS PubMed PubMed Central Google Scholar
Prensner JR, Chinnaiyan AM (2011) The emergence of lncRNAs in cancer biology. Cancer Discov 1:391–407. https://doi.org/10.1158/2159-8290.CD-11-0209
Article CAS PubMed PubMed Central Google Scholar
Statello L, Guo CJ, Chen LL, Huarte M (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22:96–118. https://doi.org/10.1038/s41580-020-00315-9
Article CAS PubMed Google Scholar
Mineo M, Lyons SM, Zdioruk M, von Spreckelsen N, Ferrer-Luna R, Ito H, Alayo QA, Kharel P, Giantini Larsen A, Fan WY, Auduong S, Grauwet K, Passaro C, Khalsa JK, Shah K, Reardon DA, Ligon KL, Beroukhim R, Nakashima H, Ivanov P, Anderson PJ, Lawler SE, Chiocca EA (2020) Tumor Interferon Signaling Is Regulated by a lncRNA INCR1 Transcribed from the PD-L1 Locus. Mol Cell 78: 1207–1223 e1208 https://doi.org/10.1016/j.molcel.2020.05.015
Stevens MM, Maire CL, Chou N, Murakami MA, Knoff DS, Kikuchi Y, Kimmerling RJ, Liu H, Haidar S, Calistri NL, Cermak N, Olcum S, Cordero NA, Idbaih A, Wen PY, Weinstock DM, Ligon KL, Manalis SR (2016) Drug sensitivity of single cancer cells is predicted by changes in mass accumulation rate. Nat Biotechnol 34:1161–1167. https://doi.org/10.1038/nbt.3697
Article CAS PubMed PubMed Central Google Scholar
Dorfman DM, Brown JA, Shahsafaei A, Freeman GJ (2006) Programmed death-1 (PD-1) is a marker of germinal center-associated T cells and angioimmunoblastic T-cell lymphoma. Am J Surg Pathol 30:802–810. https://doi.org/10.1097/01.pas.0000209855.28282.ce
Article PubMed PubMed Central Google Scholar
Brown JA, Dorfman DM, Ma FR, Sullivan EL, Munoz O, Wood CR, Greenfield EA, Freeman GJ (2003) Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol 170:1257–1266. https://doi.org/10.4049/jimmunol.170.3.1257
Article CAS PubMed Google Scholar
Castro F, Cardoso AP, Goncalves RM, Serre K, Oliveira MJ (2018) Interferon-Gamma at the crossroads of Tumor Immune Surveillance or Evasion. Front Immunol 9:847. https://doi.org/10.3389/fimmu.2018.00847
Article CAS PubMed PubMed Central Google Scholar
Weiss JM, Subleski JJ, Wigginton JM, Wiltrout RH (2007) Immunotherapy of cancer by IL-12-based cytokine combinations. Expert Opin Biol Ther 7:1705–1721. https://doi.org/10.1517/14712598.7.11.1705
Article CAS PubMed PubMed Central Google Scholar
Verhoeckx K, Cotter P, Lopez-Exposito I, Kleiveland C, Lea T, Mackie A, Requena T, Swiatecka D, Wichers H (eds) (2015) The Impact of Food Bioactives on Health: in vitro and ex vivo models. Cham (CH)
Yu W, Hua Y, Qiu H, Hao J, Zou K, Li Z, Hu S, Guo P, Chen M, Sui S, Xiong Y, Li F, Lu J, Guo W, Luo G, Deng W (2020) PD-L1 promotes tumor growth and progression by activating WIP and beta-catenin signaling pathways and predicts poor prognosis in lung cancer. Cell Death Dis 11:506. https://doi.org/10.1038/s41419-020-2701-z
Article CAS PubMed PubMed Central Google Scholar
Liang XH
Comments (0)