Dynamic reorganization of individual-level morphological networks in unilateral frontal lobe low-grade gliomas: a longitudinal study

Friedman NP, Robbins TW (2022) The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology 47(1):72–89. https://doi.org/10.1038/s41386-021-01132-0

Article  PubMed  Google Scholar 

Menon V, D’Esposito M (2022) The role of PFC networks in cognitive control and executive function. Neuropsychopharmacology 47(1):90–103. https://doi.org/10.1038/s41386-021-01152-w

Article  PubMed  Google Scholar 

Reijneveld JC, Sitskoorn MM, Klein M et al (2001) Cognitive status and quality of life in patients with suspected versus proven low-grade gliomas. Neurology 56(5):618–623. https://doi.org/10.1212/wnl.56.5.618

Article  PubMed  CAS  Google Scholar 

Ding Y, Li H, Liu F et al (2025) Shared overall topological impairments of functional brain networks across diverse state of bipolar disorder with relevance to cognitive deficits and genetic and transcriptomic variations. Bipolar Disord. https://doi.org/10.1111/bdi.70028

Article  PubMed  Google Scholar 

Sato SD, Shah VA, Fettrow T et al (2025) Resting state brain network segregation is associated with walking speed and working memory in older adults. NeuroImage 310:121155. https://doi.org/10.1016/j.neuroimage.2025.121155

Article  PubMed  Google Scholar 

Xia J, Chan YH, Girish D et al (2025) Interpretable modality-specific and interactive graph convolutional network on brain functional and structural connectomes. Med Image Anal 102:103509. https://doi.org/10.1016/j.media.2025.103509

Article  PubMed  Google Scholar 

Lee PL, Chou KH, Lu CH et al (2018) Extraction of large-scale structural covariance networks from grey matter volume for parkinson’s disease classification. Eur Radiol 28(8):3296–3305. https://doi.org/10.1007/s00330-018-5342-1

Article  PubMed  Google Scholar 

Blumen HM, Allali G, Beauchet O et al (2019) A Gray matter volume covariance network associated with the motoric cognitive risk syndrome: A multicohort MRI study. J Gerontol Biol Sci Med Sci 74(6):884–889. https://doi.org/10.1093/gerona/gly158

Article  Google Scholar 

Yan W, Tang S, Chen L et al (2024) The thalamic covariance network is associated with cognitive deficits in patients with cerebral small vascular disease. Ann Clin Transl Neurol 11(5):1148–1159. https://doi.org/10.1002/acn3.52030

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kong XZ, Wang X, Huang L et al (2014) Measuring individual morphological relationship of cortical regions. J Neurosci Methods 237:103–107. https://doi.org/10.1016/j.jneumeth.2014.09.003

Article  PubMed  Google Scholar 

Wang H, Jin X, Zhang Y et al (2016) Single-subject morphological brain networks: connectivity mapping, topological characterization and test-retest reliability. Brain Behav 6(4):e00448. https://doi.org/10.1002/brb3.448

Article  PubMed  PubMed Central  Google Scholar 

Li Y, Wang N, Wang H et al (2021) Surface-based single-subject morphological brain networks: effects of morphological index, brain parcellation and similarity measure, sample size-varying stability and test-retest reliability. NeuroImage 235:118018. https://doi.org/10.1016/j.neuroimage.2021.118018

Article  PubMed  Google Scholar 

Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23(8):1231–1251. https://doi.org/10.1093/neuonc/noab106

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lv K, Hu Y, Cao X et al (2024) Altered whole-brain functional network in patients with frontal low-grade gliomas: a resting-state functional MRI study. Neuroradiology 66(5):775–784. https://doi.org/10.1007/s00234-024-03300-7

Article  PubMed  Google Scholar 

Armstrong TS, Mendoza T, Gning I et al (2006) Validation of the M.D. Anderson symptom inventory brain tumor module (MDASI-BT). J Neuro-Oncol 80(1):27–35. https://doi.org/10.1007/s11060-006-9135-z

Article  CAS  Google Scholar 

Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385(6614):313–318. https://doi.org/10.1038/385313a0

Article  PubMed  Google Scholar 

Fulcher BD, Fornito A (2016) A transcriptional signature of hub connectivity in the mouse connectome. Proc Natl Acad Sci USA 113(5):1435–1440. https://doi.org/10.1073/pnas.1513302113

Article  PubMed  PubMed Central  CAS  Google Scholar 

Seidlitz J, Váša F, Shinn M et al (2018) Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation. Neuron 97(1):231–247e7. https://doi.org/10.1016/j.neuron.2017.11.039

Suo XS, Lei DL, Li LL et al (2018) Psychoradiological patterns of small-world properties and a systematic review of connectome studies of patients with 6 major psychiatric disorders. J Psychiatry Neurosci 43(6):427. https://doi.org/10.1503/jpn.170214

Article  PubMed  Google Scholar 

Duffau H (2014) The huge plastic potential of adult brain and the role of connectomics: new insights provided by serial mappings in glioma surgery. Cortex 58:325–337. https://doi.org/10.1016/j.cortex.2013.08.005

Article  PubMed  Google Scholar 

Tao L, Qian Z, Yang Y et al (2017) The characteristics of brain structural network in patients with low grade glioma revealed by diffusion tensor imaging. J Biomed Photonics Eng 3(3):030301. https://doi.org/10.18287/jbpe17.03.030301

Article  Google Scholar 

van der Knaap LJ, van der Ham IJ (2011) How does the corpus callosum mediate interhemispheric transfer? A review. Behav Brain Res 223(1):211–221. https://doi.org/10.1016/j.bbr.2011.04.018

Article  PubMed  Google Scholar 

Bavelier D, Neville HJ (2002) Cross-modal plasticity: where and how? Nat Rev Neurosci 3(6):443–452. https://doi.org/10.1038/nrn848

Article  PubMed  CAS  Google Scholar 

Xerri C, Zennou-Azogui Y, Sadlaoud K et al (2014) Interplay between intra- and interhemispheric remodeling of neural networks as a substrate of functional recovery after stroke: adaptive versus maladaptive reorganization. Neuroscience 283:178–201. https://doi.org/10.1016/j.neuroscience.2014.06.066

Article  PubMed  CAS  Google Scholar 

Kupers R, Ptito M (2014) Compensatory plasticity and cross-modal reorganization following early visual deprivation. Neurosci Biobehav Rev 41:36–52. https://doi.org/10.1016/j.neubiorev.2013.08.001

Article  PubMed  Google Scholar 

Striem-Amit E, Cohen L, Dehaene S et al (2012) Reading with sounds: sensory substitution selectively activates the visual word form area in the blind. Neuron 76(3):640–652. https://doi.org/10.1016/j.neuron.2012.08.026

Article  PubMed  CAS  Google Scholar 

Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA 105(34):12569–12574. https://doi.org/10.1073/pnas.0800005105

Article  PubMed  PubMed Central  Google Scholar 

Gratton C, Nomura EM, Pérez F et al (2012) Focal brain lesions to critical locations cause widespread disruption of the modular organization of the brain. J Cogn Neurosci 24(6):1275–1285. https://doi.org/10.1162/jocn_a_00222

Article  PubMed  PubMed Central  Google Scholar 

Thiel A, Habedank B, Herholz K et al (2006) From the left to the right: how the brain compensates progressive loss of Language function. Brain Lang 98(1):57–65. https://doi.org/10.1016/j.bandl.2006.01.007

Article  PubMed  Google Scholar 

Kanske P, Kotz SA (2011) Emotion speeds up conflict resolution: a new role for the ventral anterior cingulate cortex? Cereb Cortex 21(4):911–919. https://doi.org/10.1093/cercor/bhq157

Article  PubMed  Google Scholar 

Ou Y, Ni X, Gao X et al (2024) Structural and functional changes of anterior cingulate cortex subregions in migraine without aura: relationships with pain sensation and pain emotion. Cereb Cortex 34(2). https://doi.org/10.1093/cercor/bhae040

Luo J, Zeng Y, Ye Y et al (2025) Attention performance and altered amplitude of Low-frequency fluctuations in the attention network of patients with MCI: A Resting-state functional MRI study. J Integr Neurosci 24(4):36464. https://doi.org/10.31083/JIN36464

Article  PubMed 

Comments (0)

No login
gif