Asymmetric post-translational modifications regulate the nuclear translocation of STAT3 homodimers in response to leukemia inhibitory factor

J. Huynh, A. Chand, D. Gough, M. Ernst, Therapeutically exploiting STAT3 activity in cancer — using tissue repair as a road map. Nat. Rev. Cancer. 19, 82–96 (2019). https://doi.org/10.1038/s41568-018-0090-8

M. Diallo, F. Herrera, The role of understudied post-translational modifications for the behavior and function of Signal Transducer and Activator of Transcription 3. FEBS J. 289, 6235–6255 (2022). https://doi.org/10.1111/febs.16116

M. Vogt, T. Domoszlai, D. Kleshchanok, S. Lehmann, A. Schmitt, V. Poli, W. Richtering, G. Muller-Newen, The role of the N-terminal domain in dimerization and nucleocytoplasmic shuttling of latent STAT3, J.Cell Sci. 124 (2011) 900–909. https://doi.org/10.1242/jcs.072520

M. Xiang, N.J. Birkbak, V. Vafaizadeh, S.R. Walker, J.E. Yeh, S. Liu, Y. Kroll, M. Boldin, K. Taganov, B. Groner, A.L. Richardson, D.A. Frank, STAT3 induction of miR-146b forms a feedback loop to inhibit the NF-κB to IL-6 signaling axis and STAT3-driven cancer phenotypes. Sci. Signal. 7 (2014). https://doi.org/10.1126/scisignal.2004497

J. Molet, A. Mauborgne, M. Diallo, V. Armand, D. Geny, L. Villanueva, Y. Boucher, M. Pohl, Microglial Janus kinase/signal transduction and activator of transcription 3 pathway activity directly impacts astrocyte and spinal neuron characteristics. J. Neurochem. 136 (2016). https://doi.org/10.1111/jnc.13375

P.C. Heinrich, J.V. Castell, T. Andus, Interleukin-6 and the acute phase response. Biochem. J. 265, 621–636 (1990). https://doi.org/10.1042/bj2650621

D. Kamimura, K. Ishihara, T. Hirano, IL-6 signal transduction and its physiological roles: the signal orchestration model. Rev. Physiol. Biochem. Pharmacol. 149 (2003). https://doi.org/10.1007/s10254-003-0012-2

O.A. Timofeeva, S. Chasovskikh, I. Lonskaya, N.I. Tarasova, L. Khavrutskii, S.G. Tarasov, X. Zhang, V.R. Korostyshevskiy, A. Cheema, L. Zhang, S. Dakshanamurthy, M.L. Brown, A. Dritschilo, Mechanisms of unphosphorylated STAT3 transcription factor binding to DNA. J. Biol. Chem.287, 14192–14200 (2012). https://doi.org/10.1074/jbc.M111.323899

Article  PubMed  PubMed Central  Google Scholar 

E. Butturini, G. Gotte, D. Dell’Orco, G. Chiavegato, V. Marino, D. Canetti, F. Cozzolino, M. Monti, P. Pucci, S. Mariotto, Intermolecular disulfide bond influences unphosphorylated STAT3 dimerization and function. Biochem. J. 473, 3205–3219 (2016). https://doi.org/10.1042/BCJ20160294

Article  PubMed  Google Scholar 

J. Yang, M. Chatterjee-Kishore, S.M. Staugaitis, H. Nguyen, K. Schlessinger, D.E. Levy, G.R. Stark, Novel roles of unphosphorylated STAT3 in oncogenesis and transcriptional regulation. Cancer Res. 65, 939–947 (2005). https://doi.org/65/3/939 [pii]

M. Dasgupta, H. Unal, B. Willard, J. Yang, S.S. Karnik, G.R. Stark, Critical role for lysine 685 in gene expression mediated by transcription factor unphosphorylated STAT3. J. Biol. Chem. 289, 30763–30771 (2014). https://doi.org/10.1074/jbc.M114.603894

M. Dasgupta, J.K.T. Dermawan, B. Willard, G.R. Stark, STAT3-driven transcription depends upon the dimethylation of K49 by EZH2. Proc. Natl. Acad. Sci. USA 112, 3985–3990 (2015). https://doi.org/10.1073/pnas.1503152112

R. Letra-Vilela, B. Cardoso, C. Silva-Almeida, A. Maia Rocha, F. Murtinheira, J. Branco-Santos, C. Rodriguez, V. Martin, M. Santa-Marta, F. Herrera, Can asymmetric post-translational modifications regulate the behavior of STAT3 homodimers? FASEB Bioadv. 2, 116–125 (2020). https://doi.org/10.1096/fba.2019-00049

Article  CAS  PubMed  PubMed Central  Google Scholar 

F. Murtinheira, M. Migueis, R. Letra-Vilela, M. Diallo, A. Quezada, C.A. Valente, A. Oliva, C. Rodriguez, V. Martin, F. Herrera, Sacsin Deletion Induces Aggregation of Glial Intermediate Filaments, Cells. 11 (2022). https://doi.org/10.3390/cells11020299

T. Hou, S. Ray, C. Lee, A.R. Brasier, The STAT3 NH2-terminal domain stabilizes enhanceosome assembly by interacting with the p300 bromodomain. J. Biol. Chem. 283, 30725–30734 (2008). https://doi.org/10.1074/jbc.M805941200

Article  CAS  PubMed  PubMed Central  Google Scholar 

Z.-L. Yuan, Y.-J. Guan, D. Chatterjee, Y.E. Chin, Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science. 307, 269–273 (2005). https://doi.org/10.1126/science.1105166

Article  CAS  PubMed  Google Scholar 

H.J. Kang, Y.W. Yi, S.-J.J. Hou, H.J. Kim, Y. Kong, I. Bae, M.L. Brown, Disruption of STAT3-DNMT1 interaction by SH-I-14 induces re-expression of Tumor suppressor genes and inhibits growth of triple-negative breast Tumor. Oncotarget. 8, 83457–83468 (2017). https://doi.org/10.18632/oncotarget.4054

Article  PubMed  Google Scholar 

N. Sluis-Cremer, D. Arion, M.E. Abram, M.A. Parniak, Proteolytic processing of an HIV-1 pol polyprotein precursor: insights into the mechanism of reverse transcriptase p66/p51 heterodimer formation. Int. J. Biochem. Cell Biology. 36 (2004). https://doi.org/10.1016/j.biocel.2004.02.020

M.F. Lanfranco, F. Gárate, A.J. Engdahl, R.A. Maillard, Asymmetric configurations in a reengineered homodimer reveal multiple subunit communication pathways in protein allostery. J. Biol. Chem. 292, 6086–6093 (2017). https://doi.org/10.1074/jbc.M117.776047

Article  CAS  PubMed  PubMed Central  Google Scholar 

J. Yang, X. Liao, M.K. Agarwal, L. Barnes, P.E. Auron, G.R. Stark, Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NFkappaB, Genes Dev. 21, 1396–1408 (2007). https://doi.org/10.1101/gad.1553707

J.D. Milner, T.P. Vogel, L. Forbes, C.A. Ma, A. Stray-Pedersen, J.E. Niemela, J.J. Lyons, K.R. Engelhardt, Y. Zhang, N. Topcagic, E.D.O. Roberson, H. Matthews, J.W. Verbsky, T. Dasu, A. Vargas-Hernandez, N. Varghese, K.L. McClain, L.B. Karam, K. Nahmod, G. Makedonas, E.M. Mace, H.S. Sorte, G. Perminow, V.K. Rao, M.P. O’Connell, S. Price, H.C. Su, M. Butrick, J. McElwee, J.D. Hughes, J. Willet, D. Swan, Y. Xu, M. Santibanez-Koref, V. Slowik, D.L. Dinwiddie, C.E. Ciaccio, C.J. Saunders, S. Septer, S.F. Kingsmore, A.J. White, A.J. Cant, S. Hambleton, M.A. Cooper, Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood. 125, 591–599 (2015). https://doi.org/10.1182/blood-2014-09-602763

Article  CAS  PubMed  PubMed Central  Google Scholar 

M.M. Kasembeli, E. Kaparos, U. Bharadwaj, A. Allaw, A. Khouri, B. Acot, D.J. Tweardy, Aberrant function of pathogenic STAT3 mutant proteins is linked to altered stability of monomers and homodimers. Blood. 141, 1411–1424 (2023). https://doi.org/10.1182/blood.2021015330

Article  CAS  PubMed  Google Scholar 

H.-X. Zhang, P.-L. Yang, E.-M. Li, L.-Y. Xu, STAT3beta, a distinct isoform from STAT3. Int. J. Biochem. Cell. Biol. 110, 130–139 (2019). https://doi.org/10.1016/j.biocel.2019.02.006

Article  CAS  PubMed  Google Scholar 

P. Aigner, T. Mizutani, J. Horvath, T. Eder, S. Heber, K. Lind, V. Just, H.P. Moll, A. Yeroslaviz, M.J.M. Fischer, L. Kenner, B. Gyorffy, H. Sill, F. Grebien, R. Moriggl, E. Casanova, D. Stoiber, STAT3b is a Tumor suppressor in acute Myeloid Leukemia. Blood Adv. 3, 1989–2002 (2019). https://doi.org/10.1182/bloodadvances.2018026385

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif