Miller KD, Nogueira L, Devasia T, Mariotto AB, Yabroff KR, Jemal A, et al. Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin. 2022;72(5):409–36. https://doi.org/10.3322/caac.21731.
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. https://doi.org/10.3322/caac.21708.
Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48. https://doi.org/10.3322/caac.21763.
Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74(1):12–49. https://doi.org/10.3322/caac.21820.
Mariotto AB, Noone AM, Howlader N, Cho H, Keel GE, Garshell J, et al. Cancer survival: an overview of measures, uses, and interpretation. J Natl Cancer Inst Monogr. 2014;2014(49):145–86. https://doi.org/10.1093/jncimonographs/lgu024.
Article PubMed PubMed Central Google Scholar
Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69(5):363–85. https://doi.org/10.3322/caac.21565.
Gegechkori N, Haines L, Lin JJ. Long-Term and Latent Side Effects of Specific Cancer Types. Med Clin North Am. 2017;101(6):1053–73. https://doi.org/10.1016/j.mcna.2017.06.003.
Article PubMed PubMed Central Google Scholar
Armenian SH, Xu L, Ky B, Sun C, Farol LT, Pal SK, et al. Cardiovascular Disease Among Survivors of Adult-Onset Cancer: A Community-Based Retrospective Cohort Study. J Clin Oncol. 2016;34(10):1122–30. https://doi.org/10.1200/JCO.2015.64.0409.
Article CAS PubMed PubMed Central Google Scholar
Bates JE, Howell RM, Liu Q, Yasui Y, Mulrooney DA, Dhakal S, et al. Therapy-Related Cardiac Risk in Childhood Cancer Survivors: An Analysis of the Childhood Cancer Survivor Study. J Clin Oncol. 2019;37(13):1090–101. https://doi.org/10.1200/JCO.18.01764.
Article CAS PubMed PubMed Central Google Scholar
Strongman H, Gadd S, Matthews A, Mansfield KE, Stanway S, Lyon AR, et al. Medium and long-term risks of specific cardiovascular diseases in survivors of 20 adult cancers: a population-based cohort study using multiple linked UK electronic health records databases. Lancet. 2019;394(10203):1041–54. https://doi.org/10.1016/S0140-6736(19)31674-5.
Article PubMed PubMed Central Google Scholar
Armstrong GT, Kawashima T, Leisenring W, Stratton K, Stovall M, Hudson MM, et al. Aging and risk of severe, disabling, life-threatening, and fatal events in the childhood cancer survivor study. J Clin Oncol. 2014;32(12):1218–27. https://doi.org/10.1200/JCO.2013.51.1055.
Article PubMed PubMed Central Google Scholar
Hudson MM, Ness KK, Gurney JG, Mulrooney DA, Chemaitilly W, Krull KR, et al. Clinical ascertainment of health outcomes among adults treated for childhood cancer. JAMA. 2013;309(22):2371–81. https://doi.org/10.1001/jama.2013.6296.
Article CAS PubMed PubMed Central Google Scholar
Shakir DK, Rasul KI. Chemotherapy induced cardiomyopathy: pathogenesis, monitoring and management. J Clin Med Res. 2009;1(1):8–12. https://doi.org/10.4021/jocmr2009.02.1225.
Article CAS PubMed PubMed Central Google Scholar
Hayek ER, Speakman E, Rehmus E. Acute doxorubicin cardiotoxicity. N Engl J Med. 2005;352(23):2456–7. https://doi.org/10.1056/NEJM200506093522321.
Article CAS PubMed Google Scholar
Chatterjee K, Zhang J, Honbo N, Karliner JS. Doxorubicin cardiomyopathy. Cardiology. 2010;115(2):155–62. https://doi.org/10.1159/000265166.
Article CAS PubMed Google Scholar
Zhao L, Zhang B. Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes. Sci Rep. 2017;7:44735. https://doi.org/10.1038/srep44735.
Article PubMed PubMed Central Google Scholar
Lamore SD, Kohnken RA, Peters MF, Kolaja KL. Cardiovascular Toxicity Induced by Kinase Inhibitors: Mechanisms and Preclinical Approaches. Chem Res Toxicol. 2020;33(1):125–36. https://doi.org/10.1021/acs.chemrestox.9b00387.
Article CAS PubMed Google Scholar
Kondapalli L, Hsia J, Miller R, Flaig TW, Bonaca MP. Burden of Cardiovascular Disease in Immune Checkpoint Inhibitor-Treated Patients: Reconciling Adjudicated and Coded Outcomes. JACC CardioOncol. 2022;4(5):649–56. https://doi.org/10.1016/j.jaccao.2022.09.003.
Article PubMed PubMed Central Google Scholar
Herman EH, Ferrans VJ. Preclinical animal models of cardiac protection from anthracycline-induced cardiotoxicity. Semin Oncol. 1998;25(4 Suppl 10):15–21.
Sayed N, Liu C, Ameen M, Himmati F, Zhang JZ, Khanamiri S, et al. Clinical trial in a dish using iPSCs shows lovastatin improves endothelial dysfunction and cellular cross-talk in LMNA cardiomyopathy. Sci Transl Med. 2020;12(554). https://doi.org/10.1126/scitranslmed.aax9276.
Liu C, Oikonomopoulos A, Sayed N, Wu JC. Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond. Development. 2018;145(5). https://doi.org/10.1242/dev.156166.
Bozzi A, Sayed N, Matsa E, Sass G, Neofytou E, Clemons KV, et al. Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as a Model to Study Trypanosoma cruzi Infection. Stem Cell Rep. 2019;12(6):1232–41. https://doi.org/10.1016/j.stemcr.2019.04.017.
Csobonyeiova M, Polak S, Danisovic L. Toxicity testing and drug screening using iPSC-derived hepatocytes, cardiomyocytes, and neural cells. Can J Physiol Pharmacol. 2016;94(7):687–94. https://doi.org/10.1139/cjpp-2015-0459.
Article CAS PubMed Google Scholar
Tian L, Oikonomopoulos A, Liu C, Kitani T, Shrestha R, Chen CL, et al. Molecular Signatures of Beneficial Class Effects of Statins on Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Circulation. 2020;141(14):1208–10. https://doi.org/10.1161/CIRCULATIONAHA.118.035906.
Article CAS PubMed PubMed Central Google Scholar
Matsa E, Burridge PW, Yu KH, Ahrens JH, Termglinchan V, Wu H, et al. Transcriptome Profiling of Patient-Specific Human iPSC-Cardiomyocytes Predicts Individual Drug Safety and Efficacy Responses In Vitro. Cell Stem Cell. 2016;19(3):311–25. https://doi.org/10.1016/j.stem.2016.07.006.
Article CAS PubMed PubMed Central Google Scholar
Sallam K, Thomas D, Gaddam S, Lopez N, Beck A, Beach L, et al. Modeling Effects of Immunosuppressive Drugs on Human Hearts Using Induced Pluripotent Stem Cell-Derived Cardiac Organoids and Single-Cell RNA Sequencing. Circulation. 2022;145(17):1367–9. https://doi.org/10.1161/CIRCULATIONAHA.121.054317.
Article PubMed PubMed Central Google Scholar
Thomas D, Shenoy S, Sayed N. Building Multi-Dimensional Induced Pluripotent Stem Cells-Based Model Platforms to Assess Cardiotoxicity in Cancer Therapies. Front Pharmacol. 2021;12:607364. https://doi.org/10.3389/fphar.2021.607364.
Article CAS PubMed PubMed Central Google Scholar
Kitani T, Ong SG, Lam CK, Rhee JW, Zhang JZ, Oikonomopoulos A, et al. Human-Induced Pluripotent Stem Cell Model of Trastuzumab-Induced Cardiac Dysfunction in Patients With Breast Cancer. Circulation. 2019;139(21):2451–65. https://doi.org/10.1161/CIRCULATIONAHA.118.037357.
Article CAS PubMed PubMed Central Google Scholar
Sayed N, Ameen M, Wu JC. Personalized medicine in cardio-oncology: the role of induced pluripotent stem cell. Cardiovasc Res. 2019;115(5):949–59. https://doi.org/10.1093/cvr/cvz024.
Comments (0)