Cardiovascular Toxicity in Cancer Therapy: Protecting the Heart while Combating Cancer

Miller KD, Nogueira L, Devasia T, Mariotto AB, Yabroff KR, Jemal A, et al. Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin. 2022;72(5):409–36. https://doi.org/10.3322/caac.21731.

Article  PubMed  Google Scholar 

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. https://doi.org/10.3322/caac.21708.

Article  PubMed  Google Scholar 

Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48. https://doi.org/10.3322/caac.21763.

Article  PubMed  Google Scholar 

Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74(1):12–49. https://doi.org/10.3322/caac.21820.

Article  PubMed  Google Scholar 

Mariotto AB, Noone AM, Howlader N, Cho H, Keel GE, Garshell J, et al. Cancer survival: an overview of measures, uses, and interpretation. J Natl Cancer Inst Monogr. 2014;2014(49):145–86. https://doi.org/10.1093/jncimonographs/lgu024.

Article  PubMed  PubMed Central  Google Scholar 

Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69(5):363–85. https://doi.org/10.3322/caac.21565.

Article  PubMed  Google Scholar 

Gegechkori N, Haines L, Lin JJ. Long-Term and Latent Side Effects of Specific Cancer Types. Med Clin North Am. 2017;101(6):1053–73. https://doi.org/10.1016/j.mcna.2017.06.003.

Article  PubMed  PubMed Central  Google Scholar 

Armenian SH, Xu L, Ky B, Sun C, Farol LT, Pal SK, et al. Cardiovascular Disease Among Survivors of Adult-Onset Cancer: A Community-Based Retrospective Cohort Study. J Clin Oncol. 2016;34(10):1122–30. https://doi.org/10.1200/JCO.2015.64.0409.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bates JE, Howell RM, Liu Q, Yasui Y, Mulrooney DA, Dhakal S, et al. Therapy-Related Cardiac Risk in Childhood Cancer Survivors: An Analysis of the Childhood Cancer Survivor Study. J Clin Oncol. 2019;37(13):1090–101. https://doi.org/10.1200/JCO.18.01764.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Strongman H, Gadd S, Matthews A, Mansfield KE, Stanway S, Lyon AR, et al. Medium and long-term risks of specific cardiovascular diseases in survivors of 20 adult cancers: a population-based cohort study using multiple linked UK electronic health records databases. Lancet. 2019;394(10203):1041–54. https://doi.org/10.1016/S0140-6736(19)31674-5.

Article  PubMed  PubMed Central  Google Scholar 

Armstrong GT, Kawashima T, Leisenring W, Stratton K, Stovall M, Hudson MM, et al. Aging and risk of severe, disabling, life-threatening, and fatal events in the childhood cancer survivor study. J Clin Oncol. 2014;32(12):1218–27. https://doi.org/10.1200/JCO.2013.51.1055.

Article  PubMed  PubMed Central  Google Scholar 

Hudson MM, Ness KK, Gurney JG, Mulrooney DA, Chemaitilly W, Krull KR, et al. Clinical ascertainment of health outcomes among adults treated for childhood cancer. JAMA. 2013;309(22):2371–81. https://doi.org/10.1001/jama.2013.6296.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shakir DK, Rasul KI. Chemotherapy induced cardiomyopathy: pathogenesis, monitoring and management. J Clin Med Res. 2009;1(1):8–12. https://doi.org/10.4021/jocmr2009.02.1225.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hayek ER, Speakman E, Rehmus E. Acute doxorubicin cardiotoxicity. N Engl J Med. 2005;352(23):2456–7. https://doi.org/10.1056/NEJM200506093522321.

Article  CAS  PubMed  Google Scholar 

Chatterjee K, Zhang J, Honbo N, Karliner JS. Doxorubicin cardiomyopathy. Cardiology. 2010;115(2):155–62. https://doi.org/10.1159/000265166.

Article  CAS  PubMed  Google Scholar 

Zhao L, Zhang B. Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes. Sci Rep. 2017;7:44735. https://doi.org/10.1038/srep44735.

Article  PubMed  PubMed Central  Google Scholar 

Lamore SD, Kohnken RA, Peters MF, Kolaja KL. Cardiovascular Toxicity Induced by Kinase Inhibitors: Mechanisms and Preclinical Approaches. Chem Res Toxicol. 2020;33(1):125–36. https://doi.org/10.1021/acs.chemrestox.9b00387.

Article  CAS  PubMed  Google Scholar 

Kondapalli L, Hsia J, Miller R, Flaig TW, Bonaca MP. Burden of Cardiovascular Disease in Immune Checkpoint Inhibitor-Treated Patients: Reconciling Adjudicated and Coded Outcomes. JACC CardioOncol. 2022;4(5):649–56. https://doi.org/10.1016/j.jaccao.2022.09.003.

Article  PubMed  PubMed Central  Google Scholar 

Herman EH, Ferrans VJ. Preclinical animal models of cardiac protection from anthracycline-induced cardiotoxicity. Semin Oncol. 1998;25(4 Suppl 10):15–21.

CAS  PubMed  Google Scholar 

Sayed N, Liu C, Ameen M, Himmati F, Zhang JZ, Khanamiri S, et al. Clinical trial in a dish using iPSCs shows lovastatin improves endothelial dysfunction and cellular cross-talk in LMNA cardiomyopathy. Sci Transl Med. 2020;12(554). https://doi.org/10.1126/scitranslmed.aax9276.

Liu C, Oikonomopoulos A, Sayed N, Wu JC. Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond. Development. 2018;145(5). https://doi.org/10.1242/dev.156166.

Bozzi A, Sayed N, Matsa E, Sass G, Neofytou E, Clemons KV, et al. Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as a Model to Study Trypanosoma cruzi Infection. Stem Cell Rep. 2019;12(6):1232–41. https://doi.org/10.1016/j.stemcr.2019.04.017.

Article  CAS  Google Scholar 

Csobonyeiova M, Polak S, Danisovic L. Toxicity testing and drug screening using iPSC-derived hepatocytes, cardiomyocytes, and neural cells. Can J Physiol Pharmacol. 2016;94(7):687–94. https://doi.org/10.1139/cjpp-2015-0459.

Article  CAS  PubMed  Google Scholar 

Tian L, Oikonomopoulos A, Liu C, Kitani T, Shrestha R, Chen CL, et al. Molecular Signatures of Beneficial Class Effects of Statins on Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Circulation. 2020;141(14):1208–10. https://doi.org/10.1161/CIRCULATIONAHA.118.035906.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsa E, Burridge PW, Yu KH, Ahrens JH, Termglinchan V, Wu H, et al. Transcriptome Profiling of Patient-Specific Human iPSC-Cardiomyocytes Predicts Individual Drug Safety and Efficacy Responses In Vitro. Cell Stem Cell. 2016;19(3):311–25. https://doi.org/10.1016/j.stem.2016.07.006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sallam K, Thomas D, Gaddam S, Lopez N, Beck A, Beach L, et al. Modeling Effects of Immunosuppressive Drugs on Human Hearts Using Induced Pluripotent Stem Cell-Derived Cardiac Organoids and Single-Cell RNA Sequencing. Circulation. 2022;145(17):1367–9. https://doi.org/10.1161/CIRCULATIONAHA.121.054317.

Article  PubMed  PubMed Central  Google Scholar 

Thomas D, Shenoy S, Sayed N. Building Multi-Dimensional Induced Pluripotent Stem Cells-Based Model Platforms to Assess Cardiotoxicity in Cancer Therapies. Front Pharmacol. 2021;12:607364. https://doi.org/10.3389/fphar.2021.607364.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kitani T, Ong SG, Lam CK, Rhee JW, Zhang JZ, Oikonomopoulos A, et al. Human-Induced Pluripotent Stem Cell Model of Trastuzumab-Induced Cardiac Dysfunction in Patients With Breast Cancer. Circulation. 2019;139(21):2451–65. https://doi.org/10.1161/CIRCULATIONAHA.118.037357.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sayed N, Ameen M, Wu JC. Personalized medicine in cardio-oncology: the role of induced pluripotent stem cell. Cardiovasc Res. 2019;115(5):949–59. https://doi.org/10.1093/cvr/cvz024.

Article 

Comments (0)

No login
gif