Novel F-18-labeled Tracers of Sympathetic Function for Improved Risk Stratification and Clinical Outcomes

Jacobson AF, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure: results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol. 2010;55(20):2212–21.

Article  PubMed  Google Scholar 

Fallavollita JA, et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol. 2014;63(2):141–9.

Article  PubMed  Google Scholar 

Zelt JG, et al. Nuclear imaging of the cardiac sympathetic nervous system: a disease-specific interpretation in heart failure. Cardiovasc Imaging. 2020;13(4):1036–54.

Google Scholar 

Nakajima K, Nakata T. Cardiac 123I-MIBG imaging for clinical decision making: 22-year experience in Japan. J Nucl Med. 2015;56(Supplement 4):11S-19S.

Article  CAS  PubMed  Google Scholar 

Goldberger JAC, Myerburg R. Cardiac arrest and sudden cardiac death. In: Heart disease: a textbook of cardiovascular medicine. Philadelphia: Elsevier; 2022. p. 1349–86.

Google Scholar 

Spooner PM, et al. Sudden cardiac death, genes, and arrhythmogenesis: consideration of new population and mechanistic approaches from a National Heart, Lung, and Blood Institute workshop, part II. Circulation. 2001;103(20):2447–52.

Article  CAS  PubMed  Google Scholar 

Stecker EC, et al. Public health burden of sudden cardiac death in the United States. Circulation: Arrhythmia Electrophysiol. 2014;7(2):212–7.

Google Scholar 

Hayashi M, Shimizu W, Albert CM. The spectrum of epidemiology underlying sudden cardiac death. Circ Res. 2015;116(12):1887–906.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Packer M. What causes sudden death in patients with chronic heart failure and a reduced ejection fraction? Eur Heart J. 2020;41(18):1757–63.

Article  PubMed  Google Scholar 

de Vreede-Swagemakers JJ, et al. Out-of-hospital cardiac arrest in the 1990s: a population-based study in the Maastricht area on incidence, characteristics and survival. J Am Coll Cardiol. 1997;30(6):1500–5.

Article  PubMed  Google Scholar 

Morbidity I. A randomized trial of propranolol in patients with acute myocardial infarction. JAMA. 1983;250:2814–9.

Article  Google Scholar 

Chadda K, et al. Effect of propranolol after acute myocardial infarction in patients with congestive heart failure. Circulation. 1986;73(3):503–10.

Article  CAS  PubMed  Google Scholar 

Kendall MJ, et al. β-Blockers and sudden cardiac death. Ann Intern Med. 1995;123(5):358–67.

Article  CAS  PubMed  Google Scholar 

Boutitie F, et al. Amiodarone interaction with β-blockers: Analysis of the merged EMIAT (European myocardial infarct amiodarone trial) and CAMIAT (Canadian amiodarone myocardial infarction trial) databases. Circulation. 1999;99(17):2268–75.

Article  CAS  PubMed  Google Scholar 

Josephson ME, Harken AH, Horowitz LN. Endocardial excision: a new surgical technique for the treatment of recurrent ventricular tachycardia. Circulation. 1979;60(7):1430–9.

Article  CAS  PubMed  Google Scholar 

Mirowski M, et al. Clinical treatment of life-threatening ventricular tachyarrhythmias with the automatic implantable defibrillator. Am Heart J. 1981;102(2):265–70.

Article  CAS  PubMed  Google Scholar 

Moss AJ, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med. 2002;346(12):877–83.

Article  PubMed  Google Scholar 

Moss AJ, et al. Long-term clinical course of patients after termination of ventricular tachyarrhythmia by an implanted defibrillator. Circulation. 2004;110(25):3760–5.

Article  PubMed  Google Scholar 

Gräni C, et al. Sudden cardiac death in ischemic heart disease: from imaging arrhythmogenic substrate to guiding therapies. Cardiovasc Imaging. 2020;13(10):2223–38.

Google Scholar 

Passman R, Goldberger JJ. Predicting the future: risk stratification for sudden cardiac death in patients with left ventricular dysfunction. Circulation. 2012;125(24):3031–7.

Article  PubMed  Google Scholar 

Bardy GH, et al. Amiodarone or an implantable cardioverter–defibrillator for congestive heart failure. N Engl J Med. 2005;352(3):225–37.

Article  CAS  PubMed  Google Scholar 

Camm AJ, et al. Examining the psychosocial impact of implantable cardioverter defibrillators: a literature review. Clin Cardiol. 1999;22(7):481–9.

Article  Google Scholar 

Hegel MT, et al. Anxiety and depression in patients receiving implanted cardioverter-defibrillators: a longitudinal investigation. Int J Psychiatry Med. 1997;27(1):57–69.

Article  CAS  PubMed  Google Scholar 

Dougherty CM. Psychological reactions and family adjustment in shock versus no shock groups after implantation of internal cardioverter defibrillator. Heart Lung. 1995;24(4):281–91.

Article  CAS  PubMed  Google Scholar 

Verschure DO, et al. Cardiac 123I-mIBG scintigraphy is associated with freedom of appropriate ICD therapy in stable chronic heart failure patients. Int J Cardiol. 2017;248:403–8.

Article  PubMed  Google Scholar 

Travin MI. Current clinical applications and next steps for cardiac innervation imaging. Curr Cardiol Rep. 2017;19:1–11.

Article  PubMed  Google Scholar 

Pacing C. ESC guidelines on cardiac pacing and cardiac resynchronization therapy. Eur Heart J. 2013;15(8):1070–118.

Google Scholar 

Werner RA, et al. SPECT vs. PET in cardiac innervation imaging: clash of the titans. Clin Trans Imaging. 2018;6:293–303.

Article  Google Scholar 

Haveman LY, Vugts DJ, Windhorst AD. State of the art procedures towards reactive [18F] fluoride in PET tracer synthesis. EJNMMI Radiopharm Chem. 2023;8(1):28.

Article  PubMed  PubMed Central  Google Scholar 

Nolting DD, et al. Molecular imaging probe development: a chemistry perspective. Am J Nuclear Med Mole Imaging. 2012;2(3):273.

Google Scholar 

Jang KS, et al. Synthesis and bioevaluation of [18F] 4-fluoro-m-hydroxyphenethylguanidine ([18F] 4F-MHPG): a novel radiotracer for quantitative PET studies of cardiac sympathetic innervation. Bioorg Med Chem Lett. 2013;23(6):1612–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grkovski M, et al. F-18 meta-fluorobenzylguanidine PET imaging of myocardial sympathetic innervation. J Nucl Cardiol. 2022;29(6):3179–88.

Article  PubMed  PubMed Central  Google Scholar 

Berry CR, et al. Uptake and retention kinetics of para-fluorine-18-fluorobenzylguanidine in isolated rat heart. J Nucl Med. 1996;37(12):2011–6.

CAS  PubMed  Google Scholar 

Chen X, et al. Molecular Imaging-Derived Biomarker of Cardiac Nerve Integrity—Introducing High NET Affinity PET Probe 18F-AF78. Theranostics. 2022;12(9):4446.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tutov A, et al. Rationalizing the binding modes of PET radiotracers targeting the norepinephrine transporter. Pharmaceutics. 2023;15(2):690.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goldstein DS, Pekker MJ, Eisenhofer G, Sharabi Y. Computational modeling reveals multiple abnormalities of myocardial noradrenergic function in Lewy body diseases. JCI Insight. 2019;4(16):e130441.

Goldstein DS, et al. Positron emission tomographic imaging of cardiac sympathetic innervation using 6-[18F] fluorodopamine: initial findings in humans. J Am Coll Cardiol. 1993;22(7):1961–71.

Article  CAS  PubMed  Google Scholar 

Ismailani US, et al. Cardiac Sympathetic Positron Emission Tomography Imaging with Meta-[18F] Fluorobenzylguanidine is Sensitive to Uptake-1 in Rats. ACS Chem

Comments (0)

No login
gif