Arid1a-dependent canonical BAF complex suppresses inflammatory programs to drive efficient germinal center B cell responses

Ho, L. & Crabtree, G. R. Chromatin remodelling during development. Nature 463, 474–484 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kadoch, C. & Crabtree, G. R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci. Adv. 1, e1500447 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Stern, M., Jensen, R. & Herskowitz, I. Five SWI genes are required for expression of the HO gene in yeast. J. Mol. Biol. 178, 853–868 (1984).

Article  CAS  PubMed  Google Scholar 

Khavari, P. A., Peterson, C. L., Tamkun, J. W., Mendel, D. B. & Crabtree, G. R. BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366, 170–174 (1993).

Article  CAS  PubMed  Google Scholar 

Centore, R. C., Sandoval, G. J., Soares, L. M. M., Kadoch, C. & Chan, H. M. Mammalian SWI/SNF chromatin remodeling complexes: emerging mechanisms and therapeutic strategies. Trends Genet. 36, 936–950 (2020).

Article  CAS  PubMed  Google Scholar 

Gatchalian, J., Liao, J., Maxwell, M. B. & Hargreaves, D. C. Control of stimulus-dependent responses in macrophages by SWI/SNF chromatin remodeling complexes. Trends Immunol. 41, 126–140 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

He, S. et al. Structure of nucleosome-bound human BAF complex. Science 367, 875–881 (2020).

Article  CAS  PubMed  Google Scholar 

Mashtalir, N. et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell 175, 1272–1288.e20 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wanior, M., Kramer, A., Knapp, S. & Joerger, A. C. Exploiting vulnerabilities of SWI/SNF chromatin remodelling complexes for cancer therapy. Oncogene 40, 3637–3654 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jones, S. et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330, 228–231 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Love, C. et al. The genetic landscape of mutations in Burkitt lymphoma. Nat. Genet. 44, 1321–1325 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reddy, A. et al. Genetic and functional drivers of diffuse large B cell lymphoma. Cell 171, 481–494.e15 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, K. et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat. Genet. 43, 1219–1223 (2011).

Article  CAS  PubMed  Google Scholar 

Wu, J. N. & Roberts, C. W. ARID1A mutations in cancer: another epigenetic tumor suppressor? Cancer Discov. 3, 35–43 (2013).

Article  CAS  PubMed  Google Scholar 

Mittal, P. & Roberts, C. W. M. The SWI/SNF complex in cancer—biology, biomarkers and therapy. Nat. Rev. Clin. Oncol. 17, 435–448 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Silva, N. S. & Klein, U. Dynamics of B cells in germinal centres. Nat. Rev. Immunol. 15, 137–148 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Victora, G. D. & Nussenzweig, M. C. Germinal centers. Annu. Rev. Immunol. 40, 413–442 (2022).

Article  CAS  PubMed  Google Scholar 

Basso, K. Biology of germinal center B cells relating to lymphomagenesis. Hemasphere 5, e582 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bossen, C. et al. The chromatin remodeler Brg1 activates enhancer repertoires to establish B cell identity and modulate cell growth. Nat. Immunol. 16, 775–784 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi, J. et al. The SWI/SNF-like BAF complex is essential for early B cell development. J. Immunol. 188, 3791–3803 (2012).

Article  CAS  PubMed  Google Scholar 

Biram, A. et al. Bacterial infection disrupts established germinal center reactions through monocyte recruitment and impaired metabolic adaptation. Immunity 55, 442–458.e8 (2022).

Article  CAS  PubMed  Google Scholar 

Laidlaw, B. J. & Ellebedy, A. H. The germinal centre B cell response to SARS-CoV-2. Nat. Rev. Immunol. 22, 7–18 (2022).

Article  CAS  PubMed  Google Scholar 

Kaneko, N. et al. Loss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19. Cell 183, 143–157.e13 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nojima, T. et al. In-vitro derived germinal centre B cells differentially generate memory B or plasma cells in vivo. Nat. Commun. 2, 465 (2011).

Article  PubMed  Google Scholar 

Laidlaw, B. J. et al. The Eph-related tyrosine kinase ligand Ephrin-B1 marks germinal center and memory precursor B cells. J. Exp. Med. 214, 639–649 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Willis, S. N. et al. Transcription factor IRF4 regulates germinal center cell formation through a B cell-intrinsic mechanism. J. Immunol. 192, 3200–3206 (2014).

Article  CAS  PubMed  Google Scholar 

Strehl, C., Ehlers, L., Gaber, T. & Buttgereit, F. Glucocorticoids—all-rounders tackling the versatile players of the immune system. Front. Immunol. 10, 1744 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Glass, C. K. & Saijo, K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat. Rev. Immunol. 10, 365–376 (2010).

Article  CAS  PubMed  Google Scholar 

De Bosscher, K., Beck, I. M., Ratman, D., Berghe, W. V. & Libert, C. Activation of the glucocorticoid receptor in acute inflammation: the SEDIGRAM concept. Trends Pharmacol. Sci. 37, 4–16 (2016).

Article  PubMed  Google Scholar 

Elsner, R. A. & Shlomchik, M. J. Germinal center and extrafollicular B cell responses in vaccination, immunity, and autoimmunity. Immunity 53, 1136–1150 (2020).

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif