Aitha M, Marts AR, Bergstrom A, Møller AJ, Moritz L, Turner L, Nix JC, Bonomo RA, Page RC, Tierney DL, Crowder MW (2014) Biochemical, mechanistic, and spectroscopic characterization of metallo-β-lactamase VIM-2. Biochemistry 53(46):7321–7331. https://doi.org/10.1021/bi500916y
Article CAS PubMed Google Scholar
Anurag Anand A, Amod A, Anwar S, Sahoo AK, Sethi G, Samanta SK (2023) A comprehensive guide on screening and selection of a suitable AMP against biofilm-forming bacteria. Crit Rev Microbiol. https://doi.org/10.1080/1040841x.2023.2293019
Banerjee D, Shivapriya PM, Gautam PK, Misra K, Sahoo AK, Samanta SK (2020) A review on basic biology of bacterial biofilm infections and their treatments by nanotechnology based approaches. Proc Natl Acad Sci India Section B Biol Sci. https://doi.org/10.1007/s40011-018-01065-7
Boehr DD, Nussinov R, Wright PE (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 5(11):789–796. https://doi.org/10.1038/nchembio.232
Article CAS PubMed PubMed Central Google Scholar
Brem J, Cain R, Cahill S, McDonough MA, Clifton IJ, Jiménez-Castellanos J-C, Avison MB, Spencer J, Fishwick CWG, Schofield CJ (2016) Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates. Nat Commun 7(1):1–8. https://doi.org/10.1038/ncomms12406
Christopeit T, Yang K-W, Yang S-K, Leiros H-KS (2016) The structure of the metallo-β-lactamase VIM-2 in complex with a triazolylthioacetamide inhibitor. Acta Crystallogr F Struct Biol Commun 72(11):813–819. https://doi.org/10.1107/s2053230x16016113
Article CAS PubMed PubMed Central Google Scholar
Dalal V, Kumari R (2022) Screening and identification of natural product-like compounds as potential antibacterial agents targeting FemC of Staphylococcus aureus: an in-silico approach. ChemistrySelect. https://doi.org/10.1002/slct.202201728
Dalal V, Kumar P, Rakhaminov G, Qamar A, Fan X, Hunter H, Tomar S, Golemi-Kotra D, Kumar P (2019) Repurposing an ancient protein core structure: Structural studies on FmtA, a novel esterase of staphylococcus aureus. J Mol Biol 431(17):3107–3123. https://doi.org/10.1016/j.jmb.2019.06.019
Article CAS PubMed Google Scholar
Dalal V, Dhankhar P, Singh V, Singh V, Rakhaminov G, Golemi-Kotra D, Kumar P (2021) Structure-based identification of potential drugs against FmtA of staphylococcus aureus: Virtual screening, molecular dynamics, MM-GBSA, and QM/MM. Protein J 40(2):148–165. https://doi.org/10.1007/s10930-020-09953-6
Article CAS PubMed Google Scholar
Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593. https://doi.org/10.1063/1.470117
Evans DJ, Holian BL (1985) The nose-hoover thermostat. J Chem Phys 83(8):4069–4074. https://doi.org/10.1063/1.449071
Fast W, Sutton LD (2013) Metallo-β-lactamase: Inhibitors and reporter substrates. Biochimica Et Biophysica Acta Prot Proteom 1834(8):1648–1659. https://doi.org/10.1016/j.bbapap.2013.04.024
Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the expasy server. Humana Press
Jiang Z, Vasil AI, Hale J, Hancock REW, Vasil ML, Hodges RS (2009) Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Advances in experimental medicine and biology. Springer, New York, pp 561–562
Kumari R, Dalal V (2022) Identification of potential inhibitors for LLM ofStaphylococcus aureus: structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies. J Biomol Struct Dyn 40(20):9833–9847. https://doi.org/10.1080/07391102.2021.1936179
Article CAS PubMed Google Scholar
Lai MC, Topp EM (1999) Solid-state chemical stability of proteins and peptides. J Pharm Sci 88(5):489–500. https://doi.org/10.1021/js980374e
Article CAS PubMed Google Scholar
Lamiable A, Thévenet P, Rey J, Vavrusa M, Derreumaux P, Tufféry P (2016) PEP-FOLD3: fasterdenovostructure prediction for linear peptides in solution and in complex. Nucleic Acids Res 44(W1):W449–W454. https://doi.org/10.1093/nar/gkw329
Article CAS PubMed PubMed Central Google Scholar
Li L, Vorobyov I, Allen TW (2013) The different interactions of lysine and arginine side chains with lipid membranes. J Phys Chem B 117(40):11906–11920. https://doi.org/10.1021/jp405418y
Article CAS PubMed PubMed Central Google Scholar
Minond D, Saldanha SA, Subramaniam P, Spaargaren M, Spicer T, Fotsing JR, Weide T, Fokin VV, Sharpless KB, Galleni M, Bebrone C, Lassaux P, Hodder P (2009) Inhibitors of VIM-2 by screening pharmacologically active and click-chemistry compound libraries. Bioorg Med Chem 17(14):5027–5037. https://doi.org/10.1016/j.bmc.2009.05.070
Article CAS PubMed PubMed Central Google Scholar
Mondal RK, Sen D, Arya A, Samanta SK (2023) Developing anti-microbial peptide database version 1 to provide comprehensive and exhaustive resource of manually curated AMPs. Sci Rep 13(1):17843
Article CAS PubMed PubMed Central Google Scholar
Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52(12):7182–7190. https://doi.org/10.1063/1.328693
Pingali MS, Singh A, Singh V, Sahoo AK, Varadwaj PK, Samanta SK (2021) Docking and molecular dynamics simulation for therapeutic repurposing in small cell lung cancer (SCLC) patients infected with COVID-19. J Biomol Struct Dyn 41(1):16–25. https://doi.org/10.1080/07391102.2021.2002719
Article CAS PubMed Google Scholar
Pingali MS, Singh A, Anurag Anand A, Gupta SK, Sahoo AK, Varadwaj PK, Samanta SK (2023) Identification of naturally occurring compounds as alternatives to radiation therapy for treatment of small cell lung cancer: Natural alternatives to radiation therapy for SCLC. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2023.2265505
Poirel L, Naas T, Nicolas D, Collet L, Bellais S, Cavallo J-D, Nordmann P (2000) Characterization of VIM-2, a carbapenem-hydrolyzing metallo-β-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother 44(4):891–897. https://doi.org/10.1128/aac.44.4.891-897.2000
Article CAS PubMed PubMed Central Google Scholar
Prakash A, Kumar V, Meena NK, Lynn AM (2018) Elucidation of the structural stability and dynamics of heterogeneous intermediate ensembles in unfolding pathway of the N-terminal domain of TDP-43. RSC Adv 8(35):19835–19845. https://doi.org/10.1039/c8ra03368d
Article CAS PubMed PubMed Central Google Scholar
Rossino G, Marchese E, Galli G, Verde F, Finizio M, Serra M, Linciano P, Collina S (2023) Peptides as therapeutic agents: challenges and opportunities in the green transition era. Molecules 28(20):7165. https://doi.org/10.3390/molecules28207165
Article CAS PubMed PubMed Central Google Scholar
Rotondo CM, Marrone L, Goodfellow VJ, Ghavami A, Labbé G, Spencer J, Dmitrienko GI, Siemann S (2015) Arginine-containing peptides as potent inhibitors of VIM-2 metallo-β-lactamase. Biochimica Et Biophysica Acta Gen Subj 1850(11):2228–2238. https://doi.org/10.1016/j.bbagen.2015.07.012
Sawa T, Kooguchi K, Moriyama K (2020) Molecular diversity of extended-spectrum β-lactamases and carbapenemases, and antimicrobial resistance. J Intensive Care. https://doi.org/10.1186/s40560-020-0429-6
Article PubMed PubMed Central Google Scholar
Singh A, Amod A, Pandey P, Bo
Comments (0)