De Novo Design and Characterization of Novel Antimicrobial Peptides, Lk3 and Lk4, Containing Repeating Unit

Akhash N, Sheikh AF, Farshadzadeh Z (2024) Design of a novel analogue peptide with potent antibiofilm activities against Staphylococcus aureus based upon a sapecin B-derived peptide. Sci Rep 14:2256. https://doi.org/10.1038/s41598-024-52721-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amarh MA, Laryea MK, Borquaye LS (2023) De novo peptides as potential antimicrobial agents. Heliyon 9:e19641. https://doi.org/10.1016/j.heliyon.2023.e19641

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amin K, Dannenfelser R (2006) In vitro hemolysis: guidance for the pharmaceutical scientist. J Pharm Sci 95:1173–1176. https://doi.org/10.1002/jps.20627

Article  CAS  PubMed  Google Scholar 

Amorim-Carmo B, Parente AMS, Souza ES, Silva-Junior AA, Araújo RM, Fernandes-Pedrosa MF (2022) Antimicrobial peptide analogs from scorpions: modifications and structure-activity. Front Mol Biosci 9:887763. https://doi.org/10.3389/fmolb.2022.887763

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arora A, Majhi S, Mishra A (2022) Designing a short, potent, pore-forming antimicrobial peptide. Mater Today Proc 49:2392–2396. https://doi.org/10.1016/j.matpr.2021.09.409

Article  CAS  Google Scholar 

Asensio-Calavia P, González-Acosta S, Otazo-Pérez A, López MR, Morales-delaNuez A, de la Lastra JMP (2023) Teleost piscidins—In silico perspective of natural peptide antibiotics from marine sources. Antibiotics 12:855. https://doi.org/10.3390/antibiotics12050855

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barreto-Santamaría A, Arévalo-Pinzón G, Patarroyo MA, Patarroyo ME (2021) How to combat Gram-negative bacteria using antimicrobial peptides: a challenge or an unattainable goal? Antibiotics 10:1499. https://doi.org/10.3390/antibiotics10121499

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baumann C, Zerbe O (2024) The role of leucine and isoleucine in tuning the hydropathy of class A GPCRs. Proteins 92:15–23. https://doi.org/10.1002/prot.26559

Article  CAS  PubMed  Google Scholar 

Bobde SS, Alsaab FM, Wang G, Van Hoek ML (2021) Ab initio designed antimicrobial peptides against Gram-negative bacteria. Front Microbiol 12:715246. https://doi.org/10.3389/fmicb.2021.715246

Article  PubMed  PubMed Central  Google Scholar 

Bormann N, Koliszak A, Kasper S, Schoen L, Hilpert K, Volkmer R, Kikhney J, Wildemann B (2017) A short artificial antimicrobial peptide shows potential to prevent or treat bone infections. Sci Rep 7:1506. https://doi.org/10.1038/s41598-017-01698-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Casciaro B, Lin Q, Afonin S, Loffredo MR, de Turris V, Middel V, Ulrich AS, Di YP, Mangoni ML (2019) Inhibition of Pseudomonas aeruginosa biofilm formation and expression of virulence genes by selective epimerization in the peptide Esculentin-1a(1–21)NH2. FEBS J 286:3874–3891. https://doi.org/10.1111/febs.14940

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen CH, Starr CG, Troendle E, Wiedman G, Wimley WC, Ulmschneider JP, Ulmschneider MB (2019) Simulation-guided rational de novo design of a small pore-forming antimicrobial peptide. J Am Chem Soc 141:4839–4848. https://doi.org/10.1021/jacs.8b11939

Article  CAS  PubMed  Google Scholar 

Chen X, Su S, Yan Y, Yim L, Liu L (2023) Anti-Pseudomonas aeruginosa activity of natural antimicrobial peptides when used alone or in combination with antibiotics. Front Microbiol 14:1239540. https://doi.org/10.3389/fmicb.2023.1239540

Article  PubMed  PubMed Central  Google Scholar 

Coque TM, Cantón R, Pérez-Cobas AE, Fernández-de-Bobadilla MD, Baquero F (2023) Antimicrobial resistance in the global health network: known unknowns and challenges for efficient responses in the 21st century. Microorganisms 11:1050. https://doi.org/10.3390/microorganisms11041050

Article  PubMed  PubMed Central  Google Scholar 

Decker AP, Mechesso AF, Wang G (2022) Expanding the landscape of amino acid-rich antimicrobial peptides: definition, deployment in nature, implications for peptide design and therapeutic potential. Int J Mol Sci 23:12874. https://doi.org/10.3390/ijms232112874

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deshayes C, Arafath MN, Apaire-Marchais V, Roger E (2022) Drug delivery systems for the oral administration of antimicrobial peptides: promising tools to treat infectious diseases. Front Med Technol 3:778645. https://doi.org/10.3389/fmedt.2021.778645

Article  PubMed  PubMed Central  Google Scholar 

Fu Q, Cao D, Sun J, Liu X, Li H, Shu C, Liu R (2023) Prediction and bioactivity of small-molecule antimicrobial peptides from Protaetia Brevitarsis Lewis larvae. Front Microbiol 14:1124672. https://doi.org/10.3389/fmicb.2023.1124672

Article  PubMed  PubMed Central  Google Scholar 

Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the Expasy server. In: Walker JM (ed) The Proteomics protocols Handbook. Springer Protocols Handbooks, Humana Press, pp 571–607. https://doi.org/10.1385/1-59259-890-0:571

Chapter  Google Scholar 

Gawde U, Chakraborty S, Waghu FH, Barai RS, Khanderkar A, Indraguru R, Shirsat T, Idicula-Thomas S (2023) CAMPR4: a database of natural and synthetic antimicrobial peptides. Nucleic Acids Res 51:D377–D383. https://doi.org/10.1093/nar/gkac933

Article  CAS  PubMed  Google Scholar 

He Y, Lazaridis T (2013) Activity determinants of helical antimicrobial peptides: a large-scale computational study. PLoS ONE 8:e66440. https://doi.org/10.1371/journal.pone.0066440

Article  CAS  PubMed  PubMed Central  Google Scholar 

Humphrey W, Dalke A, Schulten K (1996) VMD: visual Molecular Dynamics. J Molec Graphics 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

Article  CAS  Google Scholar 

Hur DB, Kapach G, Wani NA, Kiper E, Ashkenazi M, Smollan G, Keller N, Efrati O, Shai Y (2022) Antimicrobial peptides against multidrug-resistant Pseudomonas aeruginosa biofilm from cystic fibrosis patients. J Med Chem 65:9050–9062. https://doi.org/10.1021/acs.jmedchem.2c00270

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ji S, An F, Zhang T, Lou M, Guo J, Liu K, Zhu Y, Wu J, Wu R (2024) Antimicrobial peptides: an alternative to traditional antibiotics. Eur J Med Chem 265:116072. https://doi.org/10.1016/j.ejmech.2023.116072

Article  CAS  PubMed  Google Scholar 

Khara JS, Wang Y, Ke X, Liu S, Newton SM, Langford PR, Yang YY, Ee PLR (2014) Anti-mycobacterial activities of synthetic cationic α-helical peptides and their synergism with rifampicin. Biomater 35:2032–2038. https://doi.org/10.1016/j.biomaterials.2013.11.035

Article  CAS  Google Scholar 

Kim H, Jang JH, Kim SC, Cho JH (2014) De novo generation of short antimicrobial peptides with enhanced stability and cell specificity. J Antimicrob Chemother 69:121–132. https://doi.org/10.1093/jac/dkt322

Article  CAS  PubMed  Google Scholar 

Lear S, Cobb S (2016) Pep-Calc.com: a set of web utilities for the calculation of peptide and peptoid properties and automatic mass spectral peak assignment. J Comput Aided Mol Des 30:271–277. https://doi.org/10.1007/s10822-016-9902-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li C, Zhu C, Ren B, Yin X, Shim SH, Gao Y, Zhu J, Zhao P, Liu C, Yu R, Xia X, Zhang L (2019) Two optimized antimicrobial peptides with therapeutic potential for clinical antibiotic-resistant Staphylococcus aureus. Eur J Med Chem 183:111686. https://doi.org/10.1016/j.ejmech.2019.111686

Article  CAS 

Comments (0)

No login
gif