Akhash N, Sheikh AF, Farshadzadeh Z (2024) Design of a novel analogue peptide with potent antibiofilm activities against Staphylococcus aureus based upon a sapecin B-derived peptide. Sci Rep 14:2256. https://doi.org/10.1038/s41598-024-52721-0
Article CAS PubMed PubMed Central Google Scholar
Amarh MA, Laryea MK, Borquaye LS (2023) De novo peptides as potential antimicrobial agents. Heliyon 9:e19641. https://doi.org/10.1016/j.heliyon.2023.e19641
Article CAS PubMed PubMed Central Google Scholar
Amin K, Dannenfelser R (2006) In vitro hemolysis: guidance for the pharmaceutical scientist. J Pharm Sci 95:1173–1176. https://doi.org/10.1002/jps.20627
Article CAS PubMed Google Scholar
Amorim-Carmo B, Parente AMS, Souza ES, Silva-Junior AA, Araújo RM, Fernandes-Pedrosa MF (2022) Antimicrobial peptide analogs from scorpions: modifications and structure-activity. Front Mol Biosci 9:887763. https://doi.org/10.3389/fmolb.2022.887763
Article CAS PubMed PubMed Central Google Scholar
Arora A, Majhi S, Mishra A (2022) Designing a short, potent, pore-forming antimicrobial peptide. Mater Today Proc 49:2392–2396. https://doi.org/10.1016/j.matpr.2021.09.409
Asensio-Calavia P, González-Acosta S, Otazo-Pérez A, López MR, Morales-delaNuez A, de la Lastra JMP (2023) Teleost piscidins—In silico perspective of natural peptide antibiotics from marine sources. Antibiotics 12:855. https://doi.org/10.3390/antibiotics12050855
Article CAS PubMed PubMed Central Google Scholar
Barreto-Santamaría A, Arévalo-Pinzón G, Patarroyo MA, Patarroyo ME (2021) How to combat Gram-negative bacteria using antimicrobial peptides: a challenge or an unattainable goal? Antibiotics 10:1499. https://doi.org/10.3390/antibiotics10121499
Article CAS PubMed PubMed Central Google Scholar
Baumann C, Zerbe O (2024) The role of leucine and isoleucine in tuning the hydropathy of class A GPCRs. Proteins 92:15–23. https://doi.org/10.1002/prot.26559
Article CAS PubMed Google Scholar
Bobde SS, Alsaab FM, Wang G, Van Hoek ML (2021) Ab initio designed antimicrobial peptides against Gram-negative bacteria. Front Microbiol 12:715246. https://doi.org/10.3389/fmicb.2021.715246
Article PubMed PubMed Central Google Scholar
Bormann N, Koliszak A, Kasper S, Schoen L, Hilpert K, Volkmer R, Kikhney J, Wildemann B (2017) A short artificial antimicrobial peptide shows potential to prevent or treat bone infections. Sci Rep 7:1506. https://doi.org/10.1038/s41598-017-01698-0
Article CAS PubMed PubMed Central Google Scholar
Casciaro B, Lin Q, Afonin S, Loffredo MR, de Turris V, Middel V, Ulrich AS, Di YP, Mangoni ML (2019) Inhibition of Pseudomonas aeruginosa biofilm formation and expression of virulence genes by selective epimerization in the peptide Esculentin-1a(1–21)NH2. FEBS J 286:3874–3891. https://doi.org/10.1111/febs.14940
Article CAS PubMed PubMed Central Google Scholar
Chen CH, Starr CG, Troendle E, Wiedman G, Wimley WC, Ulmschneider JP, Ulmschneider MB (2019) Simulation-guided rational de novo design of a small pore-forming antimicrobial peptide. J Am Chem Soc 141:4839–4848. https://doi.org/10.1021/jacs.8b11939
Article CAS PubMed Google Scholar
Chen X, Su S, Yan Y, Yim L, Liu L (2023) Anti-Pseudomonas aeruginosa activity of natural antimicrobial peptides when used alone or in combination with antibiotics. Front Microbiol 14:1239540. https://doi.org/10.3389/fmicb.2023.1239540
Article PubMed PubMed Central Google Scholar
Coque TM, Cantón R, Pérez-Cobas AE, Fernández-de-Bobadilla MD, Baquero F (2023) Antimicrobial resistance in the global health network: known unknowns and challenges for efficient responses in the 21st century. Microorganisms 11:1050. https://doi.org/10.3390/microorganisms11041050
Article PubMed PubMed Central Google Scholar
Decker AP, Mechesso AF, Wang G (2022) Expanding the landscape of amino acid-rich antimicrobial peptides: definition, deployment in nature, implications for peptide design and therapeutic potential. Int J Mol Sci 23:12874. https://doi.org/10.3390/ijms232112874
Article CAS PubMed PubMed Central Google Scholar
Deshayes C, Arafath MN, Apaire-Marchais V, Roger E (2022) Drug delivery systems for the oral administration of antimicrobial peptides: promising tools to treat infectious diseases. Front Med Technol 3:778645. https://doi.org/10.3389/fmedt.2021.778645
Article PubMed PubMed Central Google Scholar
Fu Q, Cao D, Sun J, Liu X, Li H, Shu C, Liu R (2023) Prediction and bioactivity of small-molecule antimicrobial peptides from Protaetia Brevitarsis Lewis larvae. Front Microbiol 14:1124672. https://doi.org/10.3389/fmicb.2023.1124672
Article PubMed PubMed Central Google Scholar
Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the Expasy server. In: Walker JM (ed) The Proteomics protocols Handbook. Springer Protocols Handbooks, Humana Press, pp 571–607. https://doi.org/10.1385/1-59259-890-0:571
Gawde U, Chakraborty S, Waghu FH, Barai RS, Khanderkar A, Indraguru R, Shirsat T, Idicula-Thomas S (2023) CAMPR4: a database of natural and synthetic antimicrobial peptides. Nucleic Acids Res 51:D377–D383. https://doi.org/10.1093/nar/gkac933
Article CAS PubMed Google Scholar
He Y, Lazaridis T (2013) Activity determinants of helical antimicrobial peptides: a large-scale computational study. PLoS ONE 8:e66440. https://doi.org/10.1371/journal.pone.0066440
Article CAS PubMed PubMed Central Google Scholar
Humphrey W, Dalke A, Schulten K (1996) VMD: visual Molecular Dynamics. J Molec Graphics 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5
Hur DB, Kapach G, Wani NA, Kiper E, Ashkenazi M, Smollan G, Keller N, Efrati O, Shai Y (2022) Antimicrobial peptides against multidrug-resistant Pseudomonas aeruginosa biofilm from cystic fibrosis patients. J Med Chem 65:9050–9062. https://doi.org/10.1021/acs.jmedchem.2c00270
Article CAS PubMed PubMed Central Google Scholar
Ji S, An F, Zhang T, Lou M, Guo J, Liu K, Zhu Y, Wu J, Wu R (2024) Antimicrobial peptides: an alternative to traditional antibiotics. Eur J Med Chem 265:116072. https://doi.org/10.1016/j.ejmech.2023.116072
Article CAS PubMed Google Scholar
Khara JS, Wang Y, Ke X, Liu S, Newton SM, Langford PR, Yang YY, Ee PLR (2014) Anti-mycobacterial activities of synthetic cationic α-helical peptides and their synergism with rifampicin. Biomater 35:2032–2038. https://doi.org/10.1016/j.biomaterials.2013.11.035
Kim H, Jang JH, Kim SC, Cho JH (2014) De novo generation of short antimicrobial peptides with enhanced stability and cell specificity. J Antimicrob Chemother 69:121–132. https://doi.org/10.1093/jac/dkt322
Article CAS PubMed Google Scholar
Lear S, Cobb S (2016) Pep-Calc.com: a set of web utilities for the calculation of peptide and peptoid properties and automatic mass spectral peak assignment. J Comput Aided Mol Des 30:271–277. https://doi.org/10.1007/s10822-016-9902-7
Article CAS PubMed PubMed Central Google Scholar
Li C, Zhu C, Ren B, Yin X, Shim SH, Gao Y, Zhu J, Zhao P, Liu C, Yu R, Xia X, Zhang L (2019) Two optimized antimicrobial peptides with therapeutic potential for clinical antibiotic-resistant Staphylococcus aureus. Eur J Med Chem 183:111686. https://doi.org/10.1016/j.ejmech.2019.111686
Comments (0)