Abbas SK, Qadeer S, Khan MJ, Abbas ST, Shah NA (2024) Plant-based peptides: antibiotics. In: Hashmi MZ, Saeed A, Musharraf SG, Shuhong W (eds) Recent advances in Industrial Biochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-50989-6_5
Arumugam G, Alagar Yadav S (2024) Synergistic inhibitory actions of resveratrol, epigallocatechin-3-gallate, and diallyl trisulfide against skin cancer cell line A431 through mitochondrial caspase dependent pathway: a combinational drug approach. Med Oncol 41:64. https://doi.org/10.1007/s12032-023-02292-3
Article CAS PubMed Google Scholar
Azmi S, Hussain MK (2021) Analysis of structures, functions, and transgenicity of phytopeptides defensin and thionin: a review. Beni-Suef Univ J Basic Appl Sci 10:5. https://doi.org/10.1186/s43088-020-00093-5
Azmy HA, Sofy AR, Aboseidah AA, El-Morsi E, Hmed AA, Elmorshedy HA (2024) Combating Multidrug Resistance: the potential of antimicrobial peptides and Biofilm challenges. Inter J IJISRT 236:307–335. https://doi.org/10.38124/ijisrt/IJISRT24APR236
Belahcene S, Kebsa W, Akingbade TV, Umar HI, Omoboyowa DA, Alshihri AA, Abo Mansour A, Alhasaniah AH, Oraig MA, Bakkour Y et al (2024) Chemical composition antioxidant and anti-inflammatory activities of Myrtus communis L. Leaf Extract: forecasting ADMET profiling and anti-inflammatory targets using Molecular Docking Tools. Molecules 29:849. https://doi.org/10.3390/molecules29040849
Article CAS PubMed PubMed Central Google Scholar
Bhattacharyya T, Sharma A, Akhterc J, Pathania R (2017) The small molecule IITR08027 restores the antibacterial activity of fluoro–quinolones against multidrug–resistant Acinetobacter baumannii by efflux inhibition. Inter J Antimicro Agent 50:219–226. https://doi.org/10.1016/j.ijantimicag.2017.03.005
Biji CA, Balde A, Nazeer RA (2024) Anti-inflammatory peptide therapeutics and the role of sulphur containing amino acids (cysteine and methionine) in inflammation suppression: a review. Inflamm Res 73:1203–1221. https://doi.org/10.1007/s00011-024-01893-6
Article CAS PubMed Google Scholar
Bouqellah NA, Hussein ET, Abdel Razik AB, Ahmed MF, Faraag AHI (2024) Development of transgenic Paulownia trees expressing antimicrobial thionin genes for enhanced resistance to fungal infections using chitosan nanoparticles. Microb Pathog 191:106659. https://doi.org/10.1016/j.micpath.2024.106659
Article CAS PubMed Google Scholar
Brüssow H (2024) The antibiotic resistance crisis and the development of new antibiotics. Microb Biotechnol 17:e14510. https://doi.org/10.1111/1751-7915.14510
Article PubMed PubMed Central Google Scholar
Bucataru C, Ciobanasu C (2024) Antimicrobial peptides: opportunities and challenges in overcoming resistance. Microbiol Res 286:127822. https://doi.org/10.1016/j.micres.2024.127822
Article CAS PubMed Google Scholar
Byrne F, Prina-Mello A, Whelan A, Mohamed BM, Davies A, Gun’ko YK et al (2009) High content analysis of the biocompatibility of nickel nanowires. J Magn Magn Mater 321(10):1341e5. https://doi.org/10.1016/j.jmmm.2009.02.035y
Chandrasekaran M, Paramasivan M (2024) Chitosan derivatives act as a bio-stimulants in plants: a review. Inter J Biol Macromol 271:132720. https://doi.org/10.1016/j.ijbiomac.2024.132720
Chattopadhyay S, Hazra R, Mallick A, Gayen S, Roy S (2024) A review exploring the fusion of oncolytic viruses and cancer immunotherapy: an innovative strategy in the realm of cancer treatment. Biochim Biophys Acta - Reviews Cancer 1879(4):189110. https://doi.org/10.1016/j.bbcan.2024.189110
Chen C, Shi J, Wang D, Kong P, Wang Z, Liu Y (2023) Antimicrobial peptides as promising antibiotic adjuvants to combat drug-resistant pathogens. Crit Rev Microbiol 50(3):267–284. https://doi.org/10.1080/1040841X.2023.2186215
Deori C, Tonushyamv S, Monalisha D (2024) Antimicrobial resistance: a looming threat to public health and global well-being. Indian J Community Family Med 10(1):18–25. https://doi.org/10.4103/ijcfm.ijcfm_1_24
Diao W-R, Hu Q-P, Zhang H, Xu J-G (2014) Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill). Food Control 35(1):109–116. https://doi.org/10.1016/j.foodcont.2013.06.056
Drozdowska M, Piasna-Słupecka E, Such A, Dziadek K, Krzyściak P, Kruk T, Duraczyńska D, Morawska-Tota M, Jamróz E (2024) Design and in Vitro Activity of Furcellaran/Chitosan Multilayer microcapsules for the delivery of glutathione and empty Model Multilayer microcapsules based on polysaccharides. Materials 17:2047. https://doi.org/10.3390/ma17092047
Article CAS PubMed PubMed Central Google Scholar
Dwivedi M, Parmar MD, Mukherjee D, Yadava A, Yadav H, Saini NP (2024) Biochemistry, mechanistic intricacies, and therapeutic potential of Antimicrobial Peptides: an alternative to traditional Antibiotics. Curr Med Chem 2024. https://doi.org/10.2174/0109298673268458230926105224
El-Gazzar N, El-Hai KMA, Teama SAM, Rabie GH (2023) Enhancing Vicia faba’s immunity against Rhizoctonia solani root rot diseases by arbuscular mycorrhizal fungi and nano chitosan. BMC Plant Biol 23:403. https://doi.org/10.1186/s12870-023-04407-4
Article CAS PubMed PubMed Central Google Scholar
Fernandes A, Rodrigues P, Pintado M, Tavaria F (2023) A systematic review of natural products for skin applications: targeting inflammation, wound healing, and photo-aging. Phytomed 115:154824. https://doi.org/10.1016/j.phymed.2023.154824
Flores-Alvarez LJ, Jiménez-Alcántar P, Ochoa-Zarzosa A, López-Meza JE (2023) The antimicrobial peptide γ-thionin from Capsicum chinense induces caspase-independent apoptosis on human K562 chronic myeloid leukemia cells and regulates epigenetic marks. Molecules 28(9):3661. https://doi.org/10.3390/molecules28093661
Article CAS PubMed PubMed Central Google Scholar
Ganesan N, Mishra B, Felix L, Mylonakis E (2023) Antimicrobial peptides and small molecules targeting the cell membrane of Staphylococcus aureus. Microbiol Mol Biol Rev 87:e00037–e00022. https://doi.org/10.1128/mmbr.00037-22
Article CAS PubMed PubMed Central Google Scholar
Ghadirnezhad Shiade SR, Fathi A, Taghavi Ghasemkheili F, Amiri E, Pessarakli M (2022) Plants’ responses under drought stress conditions: effects of strategic management approaches—a review. J Plant Nutr 46(9):2198–2230. https://doi.org/10.1080/01904167.2022.2105720
Ghosh P, Roychoudhury A (2024) Plant peptides involved in Abiotic and biotic stress responses and reactive oxygen species (ROS) signaling. J Plant Growth Regul 43:1410–1427. https://doi.org/10.1007/s00344-023-11194-7
Hayes M, Bleakley S (2018) Peptides from plants and their applications. In: Koutsopoulos S (eds) Peptide Applications in Biomedicine, Biotechnology and Bioengineering, 603–622. https://doi.org/10.1016/B978-0-08-100736-5.00025-9
Jamrozik D, Dutczak R, Machowicz J, Wojtyniak A, Smędowski A, Pietrucha-Dutczak M (2023) Metallothioneins, a part of the retinal endogenous protective system in various ocular diseases. Antioxidants 12:1251. https://doi.org/10.3390/antiox12061251
Article CAS PubMed PubMed Central Google Scholar
Ji S, An F, Zhang T, Lou M, Guo J, Liu K, Zhu Y, Wu J, Wu R (2024) Antimicrobial peptides: an alternative to traditional antibiotics. Euro J Med Chem 265:116072. https://doi.org/10.1016/j.ejmech.2023.116072
Kang M-J, Moon D-O, Park J-Y, Kim N, Lee SH, Ryu HW, Huh YH, Lee H-S, Kim M-O (2024) Rotundifuran induces ferroptotic cell death and Mitochondria Permeability Transition in Lung Cancer cells. Biomedicines 12:576. https://doi.org/10.3390/biomedicines12030576
Article CAS PubMed PubMed Central Google Scholar
Kocyigit E, Kocaadam-Bozkurt B, Bozkurt O, Ağagündüz D, Capasso R (2023) Plant toxic proteins: their biological activities, mechanism of action and removal strategies. Toxins 15:356. https://doi.org/10.3390/toxins15060356
Article CAS PubMed PubMed Central Google Scholar
Kokila V, Namasivayam SKR, Amutha K, Kumar RR, Bharani RSA, Surya P (2024) Hypocholesterolemic potential of Bacillus amyloliquefaciens KAVK1 modulates lipid accumulation on 3T3-L1 adipose cells and high fat diet-induced obese rat model. World J Microbiol Biotechnol 40:206. https://doi.org/10.1007/s11274-024-04016-9
Comments (0)