Agrawal P, Bhagat D, Mahalwal M, Sharma N, Raghava GPS (2021) AntiCP 2.0: an updated model for predicting anticancer peptides. Brief Bioinform 22:3. https://doi.org/10.1093/bib/bbaa153
Ahmaditaba MA, Shahosseini S, Daraei B, Zarghi A, Houshdar Tehrani MH (2017) Design, synthesis, and biological evaluation of new peptide analogues as selective COX-2 inhibitors. Arch Pharm (weinheim) 350:10. https://doi.org/10.1002/ardp.201700158
Akagi T, Kaneko T, Kida T, Akashi M (2005) Preparation and characterization of biodegradable nanoparticles based on poly(gamma-glutamic acid) with l-phenylalanine as a protein carrier. J Control Release 108(2–3):226–236. https://doi.org/10.1016/j.jconrel.2005.08.003
Article CAS PubMed Google Scholar
Antoniou N, Vlachakis D, Memou A, Leandrou E, Valkimadi PE, Melachroinou K, Re DB, Przedborski S, Dauer WT, Stefanis L, Rideout HJ (2018) A motif within the armadillo repeat of Parkinson’s-linked LRRK2 interacts with FADD to hijack the extrinsic death pathway. Sci Rep 8(1):3455. https://doi.org/10.1038/s41598-018-21931-8
Article CAS PubMed PubMed Central Google Scholar
Chen Z, Xie H, Hu M, Huang T, Hu Y, Sang N, Zhao Y (2020) Recent progress in treatment of hepatocellular carcinoma. Am J Cancer Res 10(9):2993–3036
CAS PubMed PubMed Central Google Scholar
Chen YP, Shih PC, Feng CW, Wu CC, Tsui KH, Lin YH, Kuo HM, Wen ZH (2021) Pardaxin activates excessive mitophagy and mitochondria-mediated apoptosis in human ovarian cancer by inducing reactive oxygen species. Antioxidants (basel) 10:12. https://doi.org/10.3390/antiox10121883
Chiangjong W, Chutipongtanate S, Hongeng S (2020) Anticancer peptide: physicochemical property, functional aspect and trend in clinical application (Review). Int J Oncol 57(3):678–696. https://doi.org/10.3892/ijo.2020.5099
Article CAS PubMed PubMed Central Google Scholar
Duvvuri M, Konkar S, Hong KH, Blagg BS, Krise JP (2006) A new approach for enhancing differential selectivity of drugs to cancer cells. ACS Chem Biol 1(5):309–315. https://doi.org/10.1021/cb6001202
Article CAS PubMed Google Scholar
Fan R, Yuan Y, Zhang Q, Zhou XR, Jia L, Liu Z, Yu C, Luo SZ, Chen L (2017) Isoleucine/leucine residues at “a” and “d” positions of a heptad repeat sequence are crucial for the cytolytic activity of a short anticancer lytic peptide. Amino Acids 49(1):193–202. https://doi.org/10.1007/s00726-016-2350-9
Article CAS PubMed Google Scholar
Garcia-Oliveira P, Otero P, Pereira AG, Chamorro F, Carpena M, Echave J, Fraga-Corral M, Simal-Gandara J, Prieto MA (2021) Status and challenges of plant-anticancer compounds in cancer treatment. Pharmaceuticals (basel) 14:2. https://doi.org/10.3390/ph14020157
Ginting TE, Suryatenggara J, Christian S, Mathew G (2017) Proinflammatory response induced by Newcastle disease virus in tumor and normal cells. Oncolytic Virother 6:21–30. https://doi.org/10.2147/OV.S123292
Article CAS PubMed PubMed Central Google Scholar
Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Open Source Drug Discovery C, Raghava GP (2013) In silico approach for predicting toxicity of peptides and proteins. PLoS ONE 8(9):e73957. https://doi.org/10.1371/journal.pone.0073957
Article CAS PubMed PubMed Central Google Scholar
Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GP (2015) Peptide toxicity prediction. Methods Mol Biol 1268:143–157. https://doi.org/10.1007/978-1-4939-2285-7_7
Article CAS PubMed Google Scholar
Han Y, Cui Z, Li YH, Hsu WH, Lee BH (2015) In vitro and in vivo anticancer activity of pardaxin against proliferation and growth of oral squamous cell carcinoma. Mar Drugs 14(1):2. https://doi.org/10.3390/md14010002
Article CAS PubMed PubMed Central Google Scholar
Hsu JC, Lin LC, Tzen JT, Chen JY (2011) Pardaxin-induced apoptosis enhances antitumor activity in HeLa cells. Peptides 32(6):1110–1116. https://doi.org/10.1016/j.peptides.2011.04.024
Article CAS PubMed Google Scholar
Huang TC, Lee JF, Chen JY (2011) Pardaxin, an antimicrobial peptide, triggers caspase-dependent and ROS-mediated apoptosis in HT-1080 cells. Mar Drugs 9(10):1995–2009. https://doi.org/10.3390/md9101995
Article CAS PubMed PubMed Central Google Scholar
Huang YP, Hsia TC, Yeh CA, Ma YS, Hsu SY, Liu YC, Lyu PC, Lai KC, Peng SF, Lien JC, Hsieh WT (2023) PW06 triggered Fas-FADD to induce apoptotic cell death in human pancreatic carcinoma MIA PaCa-2 cells through the activation of the caspase-mediated pathway. Oxid Med Cell Longev 2023:3479688. https://doi.org/10.1155/2023/3479688
Article CAS PubMed PubMed Central Google Scholar
Kalafatovic D, Giralt E (2017) Cell-penetrating peptides: design strategies beyond primary structure and amphipathicity. Molecules 22:11. https://doi.org/10.3390/molecules22111929
Kobon ET, Thongararm P, Roytrakul S, Meesuk L, Chumnanpuen P (2016) Prediction of anticancer peptides against MCF-7 breast cancer cells from the peptidomes of Achatina fulica mucus fractions. Comput Struct Biotechnol J 14:49–57. https://doi.org/10.1016/j.csbj.2015.11.005
Kumar V, Agrawal P, Kumar R, Bhalla S, Usmani SS, Varshney GC, Raghava GPS (2018) Prediction of cell-penetrating potential of modified peptides containing natural and chemically modified residues. Front Microbiol 9:725. https://doi.org/10.3389/fmicb.2018.00725
Article PubMed PubMed Central Google Scholar
Lamiable A, Thevenet P, Rey J, Vavrusa M, Derreumaux P, Tuffery P (2016) PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex. Nucl Acids Res 44(W1):W449-454. https://doi.org/10.1093/nar/gkw329
Article CAS PubMed PubMed Central Google Scholar
Lazarovici P (2002) The structure and function of pardaxin. J Toxicol Toxin Rev 21(4):391–421. https://doi.org/10.1081/TXR-120014410
Lerksuthirat T, On-Yam P, Chitphuk S, Stitchantrakul W, Newburg DS, Morrow AL, Hongeng S, Chiangjong W, Chutipongtanate S (2023) ALA-A2 is a novel anticancer peptide inspired by alpha-lactalbumin: a discovery from a computational peptide library, in silico anticancer peptide screening and in vitro experimental validation. Glob Chall 7(3):2200213. https://doi.org/10.1002/gch2.202200213
Article PubMed PubMed Central Google Scholar
Lin MC, Hui CF, Chen JY, Wu JL (2013) Truncated antimicrobial peptides from marine organisms retain anticancer activity and antibacterial activity against multidrug-resistant Staphylococcus aureus. Peptides 44:139–148. https://doi.org/10.1016/j.peptides.2013.04.004
Article CAS PubMed Google Scholar
Liscano Y, Onate-Garzon J, Delgado JP (2020) Peptides with dual antimicrobial-anticancer activity: strategies to overcome peptide limitations and rational design of anticancer peptides. Molecules 25:18. https://doi.org/10.3390/molecules25184245
Liu M, Lv J, Chen L, Li W, Han W (2022) In Silico discovery of anticancer peptides from Sanghuang. Int J Mol Sci 23:22. https://doi.org/10.3390/ijms232213682
Mphahlele MJ, Magwaza NM, Malindisa ST, Choong YS (2021) Biological evaluation the 2-aryl-2,3-dihydrobenzodiazaborinin-4(1H)-ones as potential dual alpha-glucosidase and alpha-amylase inhibitors with antioxidant properties. Chem Biol Drug Des 98(2):234–247. https://doi.org/10.1111/cbdd.13893
Article CAS PubMed Google Scholar
Ndolo RA, Luan Y, Duan S, Forrest ML, Krise JP (2012) Lysosomotropic properties of weakly basic anticancer agents promote cancer cell selectivity in vitro. PLoS ONE 7(11):e49366.
Comments (0)