Sato T, Schurgers LJ, Uenishi K. Comparison of menaquinone-4 and menaquinone-7 bioavailability in healthy women. Nutr J. 2012;12(11):93. https://doi.org/10.1186/1475-2891-11-93.
Beulens JW, Booth SL, van den Heuvel EG, Stoecklin E, Baka A, Vermeer C. The role of menaquinones (vitamin K2) in human health. Br J Nutr. 2013;110(8):1357–68. https://doi.org/10.1017/S0007114513001013.
Article CAS PubMed Google Scholar
Booth SL. Roles for vitamin K beyond coagulation. Annu Rev Nutr. 2009;29:89–110. https://doi.org/10.1146/annurev-nutr-080508-141217.
Article CAS PubMed Google Scholar
Willems BA, Vermeer C, Reutelingsperger CP, Schurgers LJ. The realm of vitamin K dependent proteins: shifting from coagulation toward calcification. Mol Nutr Food Res. 2014;58(8):1620–35. https://doi.org/10.1002/mnfr.201300743.
Article CAS PubMed Google Scholar
van den Heuvel EG, van Schoor NM, Lips P, Magdeleyns EJ, Deeg DJ, Vermeer C, den Heijer M. Circulating uncarboxylated matrix Gla protein, a marker of vitamin K status, as a risk factor of cardiovascular disease. Maturitas. 2014;77(2):137–41. https://doi.org/10.1016/j.maturitas.2013.10.008.
Article CAS PubMed Google Scholar
Chatron N, Hammed A, Benoît E, Lattard V. Structural insights into phylloquinone (vitamin K1), menaquinone (MK4, MK7), and menadione (vitamin K3) binding to VKORC1. Nutrients. 2019;11(1):67. https://doi.org/10.3390/nu11010067.
Article CAS PubMed PubMed Central Google Scholar
Ichikawa T, Horie-Inoue K, Ikeda K, Blumberg B, Inoue S. Steroid and xenobiotic receptor SXR mediates vitamin K2-activated transcription of extracellular matrix-related genes and collagen accumulation in osteoblastic cells. J Biol Chem. 2006;281(25):16927–34. https://doi.org/10.1074/jbc.M600896200.
Article CAS PubMed Google Scholar
Ohsaki Y, Shirakawa H, Miura A, Giriwono PE, Sato S, Ohashi A, Iribe M, Goto T, Komai M. Vitamin K suppresses the lipopolysaccharide-induced expression of inflammatory cytokines in cultured macrophage-like cells via the inhibition of the activation of nuclear factor κB through the repression of IKKα/β phosphorylation. J Nutr Biochem. 2010;21(11):1120–6. https://doi.org/10.1016/j.jnutbio.2009.09.011.
Article CAS PubMed Google Scholar
Vos M, Esposito G, Edirisinghe JN, Vilain S, Haddad DM, Slabbaert JR, Van Meensel S, Schaap O, De Strooper B, Meganathan R, Morais VA, Verstreken P. Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science. 2012;336(6086):1306–10. https://doi.org/10.1126/science.1218632.
Article CAS PubMed Google Scholar
Tirapelli CR, Mingatto FE, de Oliveira AM. Vitamin K(1) prevents the effect of hypoxia on phenylephrine-induced contraction in the carotid artery. Pharmacology. 2002;66(1):36–43. https://doi.org/10.1159/000063255.
Article CAS PubMed Google Scholar
Tasatargil A, Cadir B, Dalaklioglu S, Yurdakonar E, Caglar S, Turkay C. Effects of vitamin K1 supplementation on vascular responsiveness and oxidative stress in a rat femoral osteotomy model. Cell Biochem Funct. 2007;25(5):485–90. https://doi.org/10.1002/cbf.1335.
Article CAS PubMed Google Scholar
Kolahi S, Pourghassem Gargari B, Mesgari Abbasi M, Asghari Jafarabadi M, Ghamarzad Shishavan N. Effects of phylloquinone supplementation on lipid profile in women with rheumatoid arthritis: a double blind placebo controlled study. Nutr Res Pract. 2015;9(2):186–91. https://doi.org/10.4162/nrp.2015.9.2.186.
Article CAS PubMed PubMed Central Google Scholar
Pan MH, Maresz K, Lee PS, Wu JC, Ho CT, Popko J, Mehta DS, Stohs SJ, Badmaev V. Inhibition of TNF-α, IL-1α, and IL-1β by pretreatment of human monocyte-derived macrophages with menaquinone-7 and cell activation with TLR agonists in vitro. J Med Food. 2016;19(7):663–9. https://doi.org/10.1089/jmf.2016.0030.
Article CAS PubMed Google Scholar
Kieronska-Rudek A, Kij A, Kaczara P, Tworzydlo A, Napiorkowski M, Sidoryk K, Chlopicki S. Exogenous vitamins K exert anti-inflammatory effects dissociated from their role as substrates for synthesis of endogenous MK-4 in murine macrophages cell line. Cells. 2021;10(7):1571. https://doi.org/10.3390/cells10071571.
Article CAS PubMed PubMed Central Google Scholar
Upadhyay A, Fontes FL, Gonzalez-Juarrero M, McNeil MR, Crans DC, Jackson M, Crick DC. Partial saturation of menaquinone in Mycobacterium tuberculosis: function and essentiality of a novel reductase. Men J ACS Cent Sci. 2015;1(6):292–302. https://doi.org/10.1021/acscentsci.5b00212.
Koehn JT, Crick DC, Crans DC. Synthesis and characterization of partially and fully saturated menaquinone derivatives. ACS Omega. 2018;3(11):14889–901. https://doi.org/10.1021/acsomega.8b02620.
Article CAS PubMed PubMed Central Google Scholar
Cenci U, Qiu H, Pillonel T, Cardol P, Remacle C, Colleoni C, Kadouche D, Chabi M, Greub G, Bhattacharya D, Ball SG. Host-pathogen biotic interactions shaped vitamin K metabolism in Archaeplastida. Sci Rep. 2018;8(1):15243. https://doi.org/10.1038/s41598-018-33663-w.
Article CAS PubMed PubMed Central Google Scholar
Conly JM, Stein K. The production of menaquinones (vitamin K2) by intestinal bacteria and their role in maintaining coagulation homeostasis. Prog Food Nutr Sci. 1992;16(4):307–43.
Harshman SG, Shea MK, Fu X, Grusak MA, Smith D, Lamon-Fava S, Kuliopulos A, Greenberg A, Booth SL. Atorvastatin decreases renal menaquinone-4 formation in C57BL/6 male mice. J Nutr. 2019;149(3):416–21. https://doi.org/10.1093/jn/nxy290.
Article PubMed PubMed Central Google Scholar
Okano T, Shimomura Y, Yamane M, Suhara Y, Kamao M, Sugiura M, Nakagawa K. Conversion of phylloquinone (vitamin K1) into menaquinone-4 (Vitamin K2) in mice: two possible routes for menaquinone-4 accumulation in cerebra of mice. J Biol Chem. 2008;283(17):11270–9. https://doi.org/10.1074/jbc.M702971200.
Article CAS PubMed Google Scholar
Thijssen HH, Vervoort LM, Schurgers LJ, Shearer MJ. Menadione is a metabolite of oral vitamin K. Br J Nutr. 2006;95(2):260–6. https://doi.org/10.1079/bjn20051630.
Article CAS PubMed Google Scholar
Hirota Y, Tsugawa N, Nakagawa K, Suhara Y, Tanaka K, Uchino Y, Takeuchi A, Sawada N, Kamao M, Wada A, Okitsu T, Okano T. Menadione (vitamin K3) is a catabolic product of oral phylloquinone (vitamin K1) in the intestine and a circulating precursor of tissue menaquinone-4 (vitamin K2) in rats. J Biol Chem. 2013;288(46):33071–80. https://doi.org/10.1074/jbc.M113.477356.
Article CAS PubMed PubMed Central Google Scholar
Ronden JE, Drittij-Reijnders MJ, Vermeer C, Thijssen HH. Intestinal flora is not an intermediate in the phylloquinone-menaquinone-4 conversion in the rat. Biochim Biophys Acta. 1998;1379(1):69–75. https://doi.org/10.1016/s0304-4165(97)00089-5.
Article CAS PubMed Google Scholar
Hegarty JM, Yang H, Chi NC. UBIAD1-mediated vitamin K2 synthesis is required for vascular endothelial cell survival and development. Development. 2013;140(8):1713–9. https://doi.org/10.1242/dev.093112.
Article CAS PubMed PubMed Central Google Scholar
Bar A, Kus K, Manterys A, Proniewski B, Sternak M, Przyborowski K, Moorlag M, Sitek B, Marczyk B, Jasztal A, Skórka T, Franczyk-Żarów M, Kostogrys RB, Chlopicki S. Vitamin K2-MK-7 improves nitric oxide-dependent endothelial function in ApoE/LDLR−/− mice. Vascul Pharmacol. Vascul Pharmacol. 2019;122–123:106581. https://doi.org/10.1016/j.vph.2019.106581.
Article CAS PubMed Google Scholar
Juanola-Falgarona M, Salas-Salvadó J, Martínez-González MÁ, Corella D, Estruch R, Ros E, Fitó M, Arós F, Gómez-Gracia E, Fiol M, Lapetra J, Basora J, Lamuela-Raventós RM, Serra-Majem L, Pintó X, Muñoz MÁ, Ruiz-Gutiérrez V, Fernández-Ballart J, Bulló M. Dietary intake of vitamin K is inversely associated with mortality risk. J Nutr. 2014;144(5):743–50. https://doi.org/10.3945/jn.113.187740. Erratum in: J Nutr. 2016 Mar;146(3):653.
Geleijnse JM, Vermeer C, Grobbee DE, Schurgers LJ, Knapen MH, van der Meer IM, Hofman A, Witteman JC. Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: The Rotterdam Study. J Nutr. 2004;134(11):3100–5.
Comments (0)