Changes in immune subsets during chemotherapy as prognosis biomarkers for multiple myeloma patients by longitudinal monitoring

Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos M-V, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538–48.

Article  PubMed  Google Scholar 

Kazandjian D. Multiple myeloma epidemiology and survival: a unique malignancy. Semin Oncol. 2016;43(6):676–81.

Article  PubMed  PubMed Central  Google Scholar 

Elkady H, El-Adl K, Sakr H, Abdelraheem AS, Eissa SI, El-Zahabi MA. Novel promising benzoxazole/benzothiazole-derived immunomodulatory agents: design, synthesis, anticancer evaluation, and in silico ADMET analysis. Archiv der Pharmazie. 2023:356(9):e2300097.

Zhaoyun L, Rong F. Predictive role of immune profiling for survival of multiple myeloma patients. Front Immunol. 2021;12:663748.

Article  PubMed  PubMed Central  Google Scholar 

Braga WM, da Silva BR, de Carvalho AC, Maekawa YH, Bortoluzzo AB, Rizzatti EG, et al. FOXP3 and CTLA4 overexpression in multiple myeloma bone marrow as a sign of accumulation of CD4(+) T regulatory cells. Cancer Immunol, Immunotherapy : CII. 2014;63(11):1189–97.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Leivas A, Risueño RM, Guzmán A, Sánchez-Vega L, Pérez M, Megías D, et al. Natural killer cells efficiently target multiple myeloma clonogenic tumor cells. Cancer Immunol, Immunotherapy : CII. 2021;70(10):2911–24.

Article  PubMed Central  CAS  Google Scholar 

Xu L, Wen C, Xia J, Zhang H, Liang Y, Xu X. Targeted immunotherapy: harnessing the immune system to battle multiple myeloma. Cell Death Discovery. 2024;10(1):55.

Article  PubMed  PubMed Central  Google Scholar 

Papadimitriou K, Tsakirakis N, Malandrakis P, Vitsos P, Metousis A, Orologas-Stavrou N, et al. Deep phenotyping reveals distinct immune signatures correlating with prognostication, treatment responses, and MRD status in multiple myeloma. Cancers (Basel). 2020;12(11):3245.

Article  PubMed  CAS  Google Scholar 

Landgren O, Rajkumar SV. New developments in diagnosis, prognosis, and assessment of response in multiple myeloma. Clin Cancer Res. 2016;22(22):5428–33.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Di Lullo G, Marcatti M, Heltai S, Brunetto E, Tresoldi C, Bondanza A, et al. Th22 cells increase in poor prognosis multiple myeloma and promote tumor cell growth and survival. Oncoimmunology. 2015;4(5):e1005460.

Article  PubMed  PubMed Central  Google Scholar 

Prabhala RH, Pelluru D, Fulciniti M, Prabhala HK, Nanjappa P, Song W, et al. Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma. Blood. 2010;115(26):5385–92.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Shi L, Qin X, Wang H, Xia Y, Li Y, Chen X, et al. Elevated neutrophil-to-lymphocyte ratio and monocyte-to-lymphocyte ratio and decreased platelet-to-lymphocyte ratio are associated with poor prognosis in multiple myeloma. Oncotarget. 2017;8(12):18792–801.

Article  PubMed  Google Scholar 

Dimopoulos MA, Moreau P, Terpos E, Mateos MV, Zweegman S, Cook G, et al. Multiple myeloma: EHA-ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Annals of Oncol : Official J Euro Soc Med Oncol. 2021;32(3):309–22.

Article  CAS  Google Scholar 

Kumar S, Paiva B, Anderson KC, Durie B, Landgren O, Moreau P, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17(8):e328–46.

Article  PubMed  Google Scholar 

Plaumann J, Engelhardt M, Awwad MHS, Echchannaoui H, Amman E, Raab MS, et al. IL-10 inducible CD8(+) regulatory T-cells are enriched in patients with multiple myeloma and impact the generation of antigen-specific T-cells. Cancer Immunol, Immunotherapy : CII. 2018;67(11):1695–707.

Article  PubMed Central  CAS  Google Scholar 

Makaryan SZ, Cess CG, Finley SD. Modeling immune cell behavior across scales in cancer. Wiley Interdiscip Rev Systems Biol Med. 2020;12(4):e1484.

Article  Google Scholar 

Li Y, Li S, Jiang Z, Tan K, Meng Y, Zhang D, et al. Targeting lymph node delivery with nanovaccines for cancer immunotherapy: recent advances and future directions. J Nanobiotechnol. 2023;21(1):212.

Article  CAS  Google Scholar 

Chehelgerdi M, Chehelgerdi M. The use of RNA-based treatments in the field of cancer immunotherapy. Mol Cancer. 2023;22(1):106.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dosani T, Carlsten M, Maric I, Landgren O. The cellular immune system in myelomagenesis: NK cells and T cells in the development of myeloma [corrected] and their uses in immunotherapies. #N/A. 2015;5:e306.

Giannakoulas N, Ntanasis-Stathopoulos I, Terpos E. The role of marrow microenvironment in the growth and development of malignant plasma cells in multiple myeloma. Int J Mol Sci. 2021;22(9):4462.

Article  PubMed  PubMed Central  CAS  Google Scholar 

André T, Najar M, Stamatopoulos B, Pieters K, Pradier O, Bron D, et al. Immune impairments in multiple myeloma bone marrow mesenchymal stromal cells. Cancer Immunol, Immunotherapy : CII. 2015;64(2):213–24.

Article  Google Scholar 

Lioznov M, El-Cheikh J, Hoffmann F, Hildebrandt Y, Ayuk F, Wolschke C, et al. Lenalidomide as salvage therapy after allo-SCT for multiple myeloma is effective and leads to an increase of activated NK (NKp44(+)) and T (HLA-DR(+)) cells. Bone Marrow Transplant. 2010;45(2):349–53.

Article  PubMed  CAS  Google Scholar 

Besostri B, Beggiato E, Bianchi A, Mariani S, Coscia M, Peola S, et al. Increased expression of non-functional killer inhibitory receptor CD94 in CD8+ cells of myeloma patients. Br J Haematol. 2000;109(1):46–53.

Article  PubMed  CAS  Google Scholar 

Wang J, Jelcic I, Mühlenbruch L, Haunerdinger V, Toussaint NC, Zhao Y, et al. HLA-DR15 molecules jointly shape an autoreactive T cell repertoire in multiple sclerosis. Cell. 2020;183(5):1264-1281.e20.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Stefanski A-L, Rincon-Arevalo H, Schrezenmeier E, Karberg K, Szelinski F, Ritter J, et al. B cell characteristics at baseline predict vaccination response in RTX treated patients. Front Immunol. 2022;13:822885.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ahmadvand S, Faghih Z, Montazer M, Safaei A, Mokhtari M, Jafari P, et al. Importance of CD45RO+ tumor-infiltrating lymphocytes in post-operative survival of breast cancer patients. Cell Oncol (Dordr). 2019;42(3):343–56.

Article  PubMed  CAS  Google Scholar 

Amu S, Gjertsson I, Brisslert M. Functional characterization of murine CD25 expressing B cells. Scand J Immunol. 2010;71(4):275–82.

Article  PubMed  CAS  Google Scholar 

Brisslert M, Rehnberg M, Bokarewa MI. Epstein-Barr virus infection transforms CD25+ B cells into antibody-secreting cells in rheumatoid arthritis patients. Immunology. 2013;140(4):421–9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tretter T, Venigalla RKC, Eckstein V, Saffrich R, Sertel S, Ho AD, et al. Induction of CD4+ T-cell anergy and apoptosis by activated human B cells. Blood. 2008;112(12):4555–64.

Article  PubMed  CAS  Google Scholar 

Brisslert M, Bokarewa M, Larsson P, Wing K, Collins LV, Tarkowski A. Phenotypic and functional characterization of human CD25+ B cells. Immunology. 2006;117(4):548–57.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Uz B. The prognostic value of the derived neutrophil-to-lymphocyte ratio in transplantation-ineligible patients with multiple myeloma. Acta Haematol. 2018;140(3):157–8.

Article  PubMed  Google Scholar 

Paramanathan A, Saxena A, Morris DL. A systematic review and meta-analysis on the impact of pre-operative neutrophil lymphocyte ratio on long term outcomes after curative intent resection of solid tumours. Surg Oncol. 2014;23(1):31–9.

Comments (0)

No login
gif