The dysregulation of mitochondrial homeostasis–related genes could be involved in the decrease of mtDNA copy number in systemic lupus erythematosus patients

Moulton VR, Suarez-Fueyo A, Meidan E, et al. Pathogenesis of human systemic lupus erythematosus: a cellular perspective. Trends Mol Med. 2017;23:615–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cohen RA, Bayliss G, Crispin JC, et al. T cells and in situ cryoglobulin deposition in the pathogenesis of lupus nephritis. Clin Immunol. 2008;128:1–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perl A. Oxidative stress in the pathology and treatment of systemic lupus erythematosus. Nat Rev Rheumatol. 2013;9:674–86.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee HT, Lin CS, Lee CS, et al. Increased 8-hydroxy-2’-deoxyguanosine in plasma and decreased mRNA expression of human 8-oxoguanine DNA glycosylase 1, anti-oxidant enzymes, mitochondrial biogenesis-related proteins and glycolytic enzymes in leucocytes in patients with systemic lupus erythematosus. Clin Exp Immunol. 2014;176:66–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang X. Chen, F, The effect of lipid peroxides and superoxide dismutase on systemic lupus erythematosus: a preliminary study. Clin Immunol Immunopathol. 1992;63:39–44.

Article  CAS  PubMed  Google Scholar 

Shah D, Sah S, Wanchu A, et al. Altered redox state and apoptosis in the pathogenesis of systemic lupus erythematosus. Immunobiology. 2013;218:620–7.

Article  CAS  PubMed  Google Scholar 

Scavuzzi BM, Simão ANC, Iriyoda TMV, et al. Increased lipid and protein oxidation and lowered anti-oxidant defenses in systemic lupus erythematosus are associated with severity of illness, autoimmunity, increased adhesion molecules, and Th1 and Th17 immune shift. Immunol Res. 2018;66:158–71.

Article  CAS  PubMed  Google Scholar 

Nagy G, Barcza M, Gonchoroff N, et al. Nitric oxide-dependent mitochondrial biogenesis generates Ca2+ signaling profile of lupus T cells. J Immunol. 2004;173:3676–83.

Article  CAS  PubMed  Google Scholar 

Furment MM, Perl A. Immmunometabolism of systemic lupus erythematosus. Clin Immunol. 2024;261:109939.

Article  CAS  PubMed  Google Scholar 

Fu W, Liu Y, Yin H. Mitochondrial dynamics: biogenesis, fission, fusion, and mitophagy in the regulation of stem cell behaviors. Stem Cells Int. 2019;2019:9757201.

Li X, Fang P, Mai J, et al. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol. 2013;6:19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shah D, Kiran R, Wanchu A, et al. Oxidative stress in systemic lupus erythematosus: relationship to Th1 cytokine and disease activity. Immunol Lett. 2010;129:7–12.

Article  CAS  PubMed  Google Scholar 

Cui L, Weiyao J, Chenghong S, et al. Rheumatoid arthritis and mitochondrial homeostasis: the crossroads of metabolism and immunity. Front Med. 2022;9:1017650.

Article  Google Scholar 

Lee HT, Lin CS, Chen WS, et al. Leukocyte mitochondrial DNA alteration in systemic lupus erythematosus and its relevance to the susceptibility to lupus nephritis. Int J Mol Sci. 2012;13:8853–68.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Z, Zong QQ, Zhai CX, et al. An association study on the risk, glucocorticoids effectiveness, and prognosis of systemic lupus erythematosus: insight from mitochondrial DNA copy number. Immunol Res. 2022;70:850–9.

Article  CAS  PubMed  Google Scholar 

Brenmoehl J. Hoeflich, A, Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. Mitochondrion. 2013;13:755–61.

Article  CAS  PubMed  Google Scholar 

Kang I, Chu CT, Kaufman BA. The mitochondrial transcription factor TFAM in neurodegeneration: emerging evidence and mechanisms. FEBS Lett. 2018;592:793–811.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012;337:1062–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lazarou M, Sliter DA, Kane LA, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 2015;524:309–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Benedittis G, Latini A, Colafrancesco S, Priori R, Perricone C, Novelli L, Borgiani P, Ciccacci C. Alteration of mitochondrial DNA copy number and increased expression levels of mitochondrial dynamics-related genes in Sjögren’s syndrome. Biomedicines. 2022;10:2699.

Article  PubMed  PubMed Central  Google Scholar 

Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40:1725.

Article  CAS  PubMed  Google Scholar 

Latini A, Novelli L, Ceccarelli F, et al. mRNA expression analysis confirms CD44 splicing impairment in systemic lupus erythematosus patients. Lupus. 2021;30:1086–93.

Article  CAS  PubMed  Google Scholar 

Rooney JP, Ryde IT, Sanders LH, et al. PCR based determination of mitochondrial DNA copy number in multiple species. Methods Mol Biol. 2015;1241:23–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xing J, Chen M, Wood CG, et al. Mitochondrial DNA content: its genetic heritability and association with renal cell carcinoma. J Natl Cancer Inst Monogr. 2008;100:1104–12.

Article  CAS  Google Scholar 

Chávez MD, Tse HM. Targeting mitochondrial-derived reactive oxygen species in T cell-mediated autoimmune diseases. Front Immunol. 2021;12:703972.

Article  PubMed  PubMed Central  Google Scholar 

Perez-Sanchez C, Ruiz-Limon P, Aguirre MA, et al. Mitochondrial dysfunction in antiphospholipid syndrome: implications in the pathogenesis of the disease and effects of coenzyme Q(10) treatment. Blood. 2012;119:5859–70.

Article  CAS  PubMed  Google Scholar 

Alarcon F, McLaren Z, Wright HL. Neutrophils in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus: same for different MO. Front Immunol. 2021;12:649693.

Article  CAS  Google Scholar 

Sherman JM, Stone EM, Freeman-Cook LL, et al. The conserved core of a human SIR2 homologue functions in yeast silencing. Mol Biol Cell. 1999;10:3045–59.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aquilano K, Baldelli S, Pagliei B, et al. p53 orchestrates the PGC-1α-mediated antioxidant response upon mild redox and metabolic imbalance. Antioxid Redox Signal. 2013;18:386–99.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu K, Li B, Lin Q, et al. Nicotinamide mononucleotide attenuates isoproterenol-induced cardiac fibrosis by regulating oxidative stress and Smad3 acetylation. Life sci. 2021;274:119299.

Article  CAS  PubMed  Google Scholar 

Chen H, Detmer SA, Ewald AJ, et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. 2003;160:189–200.

Article 

Comments (0)

No login
gif