cGAS-STING pathway in systemic lupus erythematosus: biological implications and therapeutic opportunities

Ameer MA, Chaudhry H, Mushtaq J, Khan OS, Babar M, Hashim T, et al. An overview of systemic lupus erythematosus (SLE) pathogenesis, classification, and management. Cureus. 2022;14(10):e30330.

PubMed  PubMed Central  Google Scholar 

Banchereau J, Pascual V. Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity. 2006;25(3):383–92.

Article  CAS  PubMed  Google Scholar 

Ko K, Koldobskaya Y, Rosenzweig E, Niewold TB. Activation of the interferon pathway is dependent upon autoantibodies in African-American SLE patients, but not in European-American SLE patients. Front Immunol. 2013;4:309.

Article  PubMed  PubMed Central  Google Scholar 

Postal M, Vivaldo JF, Fernandez-Ruiz R, Paredes JL, Appenzeller S, Niewold TB. Type I interferon in the pathogenesis of systemic lupus erythematosus. Curr Opin Immunol. 2020;67:87–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou Y, Li Q, Pan R, Wang Q, Zhu X, Yuan C, et al. Regulatory roles of three miRNAs on allergen mRNA expression in Tyrophagus putrescentiae. Allergy. 2022;77(2):469–82.

Article  CAS  PubMed  Google Scholar 

Barrat FJ, Elkon KB, Fitzgerald KA. Importance of nucleic acid recognition in inflammation and autoimmunity. Annu Rev Med. 2016;67:323–36.

Article  CAS  PubMed  Google Scholar 

Chyuan I-T, Tzeng H-T, Chen J-Y. Signaling pathways of type I and type III interferons and targeted therapies in systemic lupus erythematosus. Cells. 2019;8(9):963.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu W, Zhang S, Wang J. IFN-γ, should not be ignored in SLE. Front Immunol. 2022;13:954706.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu W, Li M, Wang Z, Wang J. IFN-γ mediates the development of systemic lupus erythematosus. BioMed Res Int. 2020;2020:1.

CAS  Google Scholar 

Chodisetti SB, Fike AJ, Domeier PP, Singh H, Choi NM, Corradetti C, et al. Type II but not type I IFN signaling is indispensable for TLR7-promoted development of autoreactive B cells and systemic autoimmunity. J Immunol. 2020;204(4):796–809.

Article  CAS  PubMed  Google Scholar 

Harigai M, Kawamoto M, Hara M, Kubota T, Kamatani N, Miyasaka N. Excessive production of IFN-γ in patients with systemic lupus erythematosus and its contribution to induction of B lymphocyte stimulator/B cell-activating factor/TNF ligand superfamily-13B. J Immunol. 2008;181(3):2211–9.

Article  CAS  PubMed  Google Scholar 

Xiong H, Xi Y, Yuan Z, Wang B, Hu S, Fang C, et al. IFN-γ activates the tumor cell-intrinsic STING pathway through the induction of DNA damage and cytosolic dsDNA formation. Oncoimmunology. 2022;11(1):2044103.

Article  PubMed  PubMed Central  Google Scholar 

Lee AJ, Ashkar AA. The dual nature of type I and type II interferons. Front Immunol. 2018;9:403701.

Article  Google Scholar 

Kirou KA, Lee C, George S, Louca K, Papagiannis IG, Peterson MG, et al. Coordinate overexpression of interferon-α–induced genes in systemic lupus erythematosus. Arthritis Rheum. 2004;50(12):3958–67.

Article  CAS  PubMed  Google Scholar 

Munroe ME, Lu R, Zhao YD, Fife DA, Robertson JM, Guthridge JM, et al. Altered type II interferon precedes autoantibody accrual and elevated type I interferon activity prior to systemic lupus erythematosus classification. Ann Rheum Dis. 2016;75(11):2014–21.

Article  CAS  PubMed  Google Scholar 

Wang Y, Chen L, Li F, Bao M, Zeng J, Xiang J, et al. TLR4 rs41426344 increases susceptibility of rheumatoid arthritis (RA) and juvenile idiopathic arthritis (JIA) in a central south Chinese Han population. Pediatr Rheumatol. 2017;15:1–8.

Article  Google Scholar 

Deng P, Dong X, Wu Z, Hou X, Mao L, Guo J, et al. Development of glycosylation-modified DPPA-1 compounds as innovative PD-1/PD-L1 blockers: design, synthesis, and biological evaluation. Molecules. 2024;29(8):1898.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee-Kirsch MA. The type I interferonopathies. Annu Rev Med. 2017;68:297–315.

Article  CAS  PubMed  Google Scholar 

Rodero MP, Crow YJ. Type I interferon–mediated monogenic autoinflammation: the type I interferonopathies, a conceptual overview. J Exp Med. 2016;213(12):2527–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Meng Y, Chen M, Baral K, Fu Y, Yang Y, et al. Correlation between the systemic immune-inflammation indicator (SII) and serum ferritin in US adults: a cross-sectional study based on NHANES 2015–2018. Ann Med. 2023;55(2):2275148.

Article  PubMed  PubMed Central  Google Scholar 

Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013;339(6121):786–91.

Article  CAS  PubMed  Google Scholar 

Akbari M, Elmi R. Herpes simplex virus and human papillomavirus coinfections in hyperimmunoglobulin E syndrome presenting as a conjunctival mass lesion. Case Rep Med. 2017;2017:1.

Article  Google Scholar 

Gharehbeglou M, Yazdani S, White K, Haeri M, Masoumzadeh N. Atorvastatin rapidly reduces hepatitis B viral load in combination with Tenofovir: a prospective clinical trial. Can J Infect Dis Med Microbiol. 2022;2022:1.

Article  Google Scholar 

Li X-D, Wu J, Gao D, Wang H, Sun L, Chen ZJ. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science. 2013;341(6152):1390–4.

Article  CAS  PubMed  Google Scholar 

Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Röhl I, et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature. 2013;498(7454):380–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Wang D, Tan D, Zou A, Wang Z, Gong H, et al. Immune-enhancing activity of compound polysaccharide on the inactivated influenza vaccine. Carbohyd Polym. 2024;336:122080.

Article  CAS  Google Scholar 

Haeri MR, White K, Qharebeglou M, Ansar MM. Cholesterol suppresses antimicrobial effect of statins. Iran J Basic Med Sci. 2015;18(12):1253.

PubMed  PubMed Central  Google Scholar 

Gao D, Li T, Li X-D, Chen X, Li Q-Z, Wight-Carter M, et al. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc Natl Acad Sci. 2015;112(42):E5699-E705.

Andreeva L, Hiller B, Kostrewa D, Lässig C, de Oliveira Mann CC, Jan Drexler D, et al. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein–DNA ladders. Nature. 2017;549(7672):394–8.

Article  CAS  PubMed  Google Scholar 

Civril F, Deimling T, de Oliveira Mann CC, Ablasser A, Moldt M, Witte G, et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nature. 2013;498(7454):332–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang Y-H, Liu X-Y, Du X-X, Jiang Z-F, Su X-D. The structural basis for the sensing and binding of cyclic di-GMP by STING. Nat Struct Mol Biol. 2012;19(7):728–30.

Article  CAS  PubMed  Google Scholar 

Shang G, Zhang C, Chen ZJ, Bai X-c, Zhang X. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP–AMP. Nature. 2019;567(7748):389–93.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif