Ameer MA, Chaudhry H, Mushtaq J, Khan OS, Babar M, Hashim T, et al. An overview of systemic lupus erythematosus (SLE) pathogenesis, classification, and management. Cureus. 2022;14(10):e30330.
PubMed PubMed Central Google Scholar
Banchereau J, Pascual V. Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity. 2006;25(3):383–92.
Article CAS PubMed Google Scholar
Ko K, Koldobskaya Y, Rosenzweig E, Niewold TB. Activation of the interferon pathway is dependent upon autoantibodies in African-American SLE patients, but not in European-American SLE patients. Front Immunol. 2013;4:309.
Article PubMed PubMed Central Google Scholar
Postal M, Vivaldo JF, Fernandez-Ruiz R, Paredes JL, Appenzeller S, Niewold TB. Type I interferon in the pathogenesis of systemic lupus erythematosus. Curr Opin Immunol. 2020;67:87–94.
Article CAS PubMed PubMed Central Google Scholar
Zhou Y, Li Q, Pan R, Wang Q, Zhu X, Yuan C, et al. Regulatory roles of three miRNAs on allergen mRNA expression in Tyrophagus putrescentiae. Allergy. 2022;77(2):469–82.
Article CAS PubMed Google Scholar
Barrat FJ, Elkon KB, Fitzgerald KA. Importance of nucleic acid recognition in inflammation and autoimmunity. Annu Rev Med. 2016;67:323–36.
Article CAS PubMed Google Scholar
Chyuan I-T, Tzeng H-T, Chen J-Y. Signaling pathways of type I and type III interferons and targeted therapies in systemic lupus erythematosus. Cells. 2019;8(9):963.
Article CAS PubMed PubMed Central Google Scholar
Liu W, Zhang S, Wang J. IFN-γ, should not be ignored in SLE. Front Immunol. 2022;13:954706.
Article CAS PubMed PubMed Central Google Scholar
Liu W, Li M, Wang Z, Wang J. IFN-γ mediates the development of systemic lupus erythematosus. BioMed Res Int. 2020;2020:1.
Chodisetti SB, Fike AJ, Domeier PP, Singh H, Choi NM, Corradetti C, et al. Type II but not type I IFN signaling is indispensable for TLR7-promoted development of autoreactive B cells and systemic autoimmunity. J Immunol. 2020;204(4):796–809.
Article CAS PubMed Google Scholar
Harigai M, Kawamoto M, Hara M, Kubota T, Kamatani N, Miyasaka N. Excessive production of IFN-γ in patients with systemic lupus erythematosus and its contribution to induction of B lymphocyte stimulator/B cell-activating factor/TNF ligand superfamily-13B. J Immunol. 2008;181(3):2211–9.
Article CAS PubMed Google Scholar
Xiong H, Xi Y, Yuan Z, Wang B, Hu S, Fang C, et al. IFN-γ activates the tumor cell-intrinsic STING pathway through the induction of DNA damage and cytosolic dsDNA formation. Oncoimmunology. 2022;11(1):2044103.
Article PubMed PubMed Central Google Scholar
Lee AJ, Ashkar AA. The dual nature of type I and type II interferons. Front Immunol. 2018;9:403701.
Kirou KA, Lee C, George S, Louca K, Papagiannis IG, Peterson MG, et al. Coordinate overexpression of interferon-α–induced genes in systemic lupus erythematosus. Arthritis Rheum. 2004;50(12):3958–67.
Article CAS PubMed Google Scholar
Munroe ME, Lu R, Zhao YD, Fife DA, Robertson JM, Guthridge JM, et al. Altered type II interferon precedes autoantibody accrual and elevated type I interferon activity prior to systemic lupus erythematosus classification. Ann Rheum Dis. 2016;75(11):2014–21.
Article CAS PubMed Google Scholar
Wang Y, Chen L, Li F, Bao M, Zeng J, Xiang J, et al. TLR4 rs41426344 increases susceptibility of rheumatoid arthritis (RA) and juvenile idiopathic arthritis (JIA) in a central south Chinese Han population. Pediatr Rheumatol. 2017;15:1–8.
Deng P, Dong X, Wu Z, Hou X, Mao L, Guo J, et al. Development of glycosylation-modified DPPA-1 compounds as innovative PD-1/PD-L1 blockers: design, synthesis, and biological evaluation. Molecules. 2024;29(8):1898.
Article CAS PubMed PubMed Central Google Scholar
Lee-Kirsch MA. The type I interferonopathies. Annu Rev Med. 2017;68:297–315.
Article CAS PubMed Google Scholar
Rodero MP, Crow YJ. Type I interferon–mediated monogenic autoinflammation: the type I interferonopathies, a conceptual overview. J Exp Med. 2016;213(12):2527–38.
Article CAS PubMed PubMed Central Google Scholar
Zhang Y, Meng Y, Chen M, Baral K, Fu Y, Yang Y, et al. Correlation between the systemic immune-inflammation indicator (SII) and serum ferritin in US adults: a cross-sectional study based on NHANES 2015–2018. Ann Med. 2023;55(2):2275148.
Article PubMed PubMed Central Google Scholar
Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013;339(6121):786–91.
Article CAS PubMed Google Scholar
Akbari M, Elmi R. Herpes simplex virus and human papillomavirus coinfections in hyperimmunoglobulin E syndrome presenting as a conjunctival mass lesion. Case Rep Med. 2017;2017:1.
Gharehbeglou M, Yazdani S, White K, Haeri M, Masoumzadeh N. Atorvastatin rapidly reduces hepatitis B viral load in combination with Tenofovir: a prospective clinical trial. Can J Infect Dis Med Microbiol. 2022;2022:1.
Li X-D, Wu J, Gao D, Wang H, Sun L, Chen ZJ. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science. 2013;341(6152):1390–4.
Article CAS PubMed Google Scholar
Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Röhl I, et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature. 2013;498(7454):380–4.
Article CAS PubMed PubMed Central Google Scholar
Zhang Y, Wang D, Tan D, Zou A, Wang Z, Gong H, et al. Immune-enhancing activity of compound polysaccharide on the inactivated influenza vaccine. Carbohyd Polym. 2024;336:122080.
Haeri MR, White K, Qharebeglou M, Ansar MM. Cholesterol suppresses antimicrobial effect of statins. Iran J Basic Med Sci. 2015;18(12):1253.
PubMed PubMed Central Google Scholar
Gao D, Li T, Li X-D, Chen X, Li Q-Z, Wight-Carter M, et al. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc Natl Acad Sci. 2015;112(42):E5699-E705.
Andreeva L, Hiller B, Kostrewa D, Lässig C, de Oliveira Mann CC, Jan Drexler D, et al. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein–DNA ladders. Nature. 2017;549(7672):394–8.
Article CAS PubMed Google Scholar
Civril F, Deimling T, de Oliveira Mann CC, Ablasser A, Moldt M, Witte G, et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nature. 2013;498(7454):332–7.
Article CAS PubMed PubMed Central Google Scholar
Huang Y-H, Liu X-Y, Du X-X, Jiang Z-F, Su X-D. The structural basis for the sensing and binding of cyclic di-GMP by STING. Nat Struct Mol Biol. 2012;19(7):728–30.
Article CAS PubMed Google Scholar
Shang G, Zhang C, Chen ZJ, Bai X-c, Zhang X. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP–AMP. Nature. 2019;567(7748):389–93.
Comments (0)