Abbott M, Ustoyev Y (2019) Cancer and the Immune System: The History and Background of Immunotherapy. Semin Oncol Nurs 35:150923. https://doi.org/10.1016/j.soncn.2019.08.002
Adam G, Rampasek L, Safikhani Z et al (2020) Machine learning approaches to drug response prediction: challenges and recent progress. NPJ Precis Oncol 4:19. https://doi.org/10.1038/s41698-020-0122-1
Article PubMed PubMed Central Google Scholar
Aguero F, Al-Lazikani B, Aslett M et al (2008) Genomic-scale prioritization of drug targets: the TDR Targets database. Nat Rev Drug Discov 7:900–907. https://doi.org/10.1038/nrd2684
Article CAS PubMed PubMed Central Google Scholar
Ahmadi Moughari F, Eslahchi C (2020) ADRML: anticancer drug response prediction using manifold learning. Sci Rep 10:14245. https://doi.org/10.1038/s41598-020-71257-7
Article CAS PubMed PubMed Central Google Scholar
Aksoy BA, Dancik V, Smith K, et al. (2017) CTD2 Dashboard: a searchable web interface to connect validated results from the Cancer Target Discovery and Development Network. Database (Oxford) 2017. https://doi.org/10.1093/database/bax054
Amar D, Izraeli S, Shamir R (2017) Utilizing somatic mutation data from numerous studies for cancer research: proof of concept and applications. Oncogene 36:3375–3383. https://doi.org/10.1038/onc.2016.489
Article CAS PubMed PubMed Central Google Scholar
Ashok G, Ramaiah S (2022) A critical review of datasets and computational suites for improving cancer theranostics and biomarker discovery. Med Oncol 39:206. https://doi.org/10.1007/s12032-022-01815-8
Article CAS PubMed Google Scholar
Aslam B, Basit M, Nisar MA et al (2017) Proteomics: Technologies and Their Applications. J Chromatogr Sci 55:182–196. https://doi.org/10.1093/chromsci/bmw167
Article CAS PubMed Google Scholar
Bairoch A, Apweiler R, Wu CH et al (2005) The Universal Protein Resource (UniProt). Nucleic Acids Res 33:D154-159. https://doi.org/10.1093/nar/gki070
Article CAS PubMed Google Scholar
Bamford S, Dawson E, Forbes S et al (2004) The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer 91:355–358. https://doi.org/10.1038/sj.bjc.6601894
Article CAS PubMed PubMed Central Google Scholar
Baptista D, Ferreira PG, Rocha M (2021) Deep learning for drug response prediction in cancer. Brief Bioinform 22:360–379. https://doi.org/10.1093/bib/bbz171
Article CAS PubMed Google Scholar
Barbarino JM, Whirl-Carrillo M, Altman RB et al (2018) PharmGKB: A worldwide resource for pharmacogenomic information. Wiley Interdiscip Rev Syst Biol Med 10:e1417. https://doi.org/10.1002/wsbm.1417
Article PubMed PubMed Central Google Scholar
Barras D, Widmann C (2011) Promises of apoptosis-inducing peptides in cancer therapeutics. Curr Pharm Biotechnol 12:1153–1165. https://doi.org/10.2174/138920111796117337
Article CAS PubMed Google Scholar
Barretina J, Caponigro G, Stransky N et al (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483:603–607. https://doi.org/10.1038/nature11003
Article CAS PubMed PubMed Central Google Scholar
Barrett T, Wilhite SE, Ledoux P et al (2013) NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res 41:D991-995. https://doi.org/10.1093/nar/gks1193
Article CAS PubMed Google Scholar
Basu A, Bodycombe NE, Cheah JH et al (2013) An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 154:1151–1161. https://doi.org/10.1016/j.cell.2013.08.003
Article CAS PubMed PubMed Central Google Scholar
Bausch-Fluck D, Hofmann A, Bock T et al (2015) A mass spectrometric-derived cell surface protein atlas. PLoS ONE 10:e0121314. https://doi.org/10.1371/journal.pone.0121314
Article CAS PubMed PubMed Central Google Scholar
Beger RD (2013) A review of applications of metabolomics in cancer. Metabolites 3:552–574. https://doi.org/10.3390/metabo3030552
Article CAS PubMed PubMed Central Google Scholar
Berger AH, Brooks AN, Wu X et al (2016) High-throughput Phenotyping of Lung Cancer Somatic Mutations. Cancer Cell 30:214–228. https://doi.org/10.1016/j.ccell.2016.06.022
Article CAS PubMed PubMed Central Google Scholar
Bharatam PV (2021) Computer-Aided Drug Design. In: Poduri R (ed) Drug Discovery and Development. Springer Singapore Singapore, pp. 137–210
Bharatam PV, Khanna S, Francis SM (2008) Modeling and Informatics in Drug DesignPreclinical Development Handbook. pp. 1–45
Blekherman G, Laubenbacher R, Cortes DF et al (2011) Bioinformatics tools for cancer metabolomics. Metabolomics 7:329–343. https://doi.org/10.1007/s11306-010-0270-3
Article CAS PubMed PubMed Central Google Scholar
Borgan E, Sitter B, Lingjaerde OC et al (2010) Merging transcriptomics and metabolomics–advances in breast cancer profiling. BMC Cancer 10:628. https://doi.org/10.1186/1471-2407-10-628
Article CAS PubMed PubMed Central Google Scholar
Bojorquez DCQ, Campos MRS (2023) Traditional and Novel Computer-Aided Drug Design (CADD) Approaches in the Anticancer Drug Discovery Process. Curr Cancer Drug Targets 23:333–345. https://doi.org/10.2174/1568009622666220705104249
Brum AM, van de Peppel J, van der Leije CS et al (2015) Connectivity Map-based discovery of parbendazole reveals targetable human osteogenic pathway. Proc Natl Acad Sci USA 112:12711–12716. https://doi.org/10.1073/pnas.1501597112
Article CAS PubMed PubMed Central Google Scholar
Bruno AE, Li L, Kalabus JL et al (2012) miRdSNP: a database of disease-associated SNPs and microRNA target sites on 3’UTRs of human genes. BMC Genomics 13:44. https://doi.org/10.1186/1471-2164-13-44
Article CAS PubMed PubMed Central Google Scholar
Bulusu KC, Tym JE, Coker EA et al (2014) canSAR: updated cancer research and drug discovery knowledgebase. Nucleic Acids Res 42:D1040-1047. https://doi.org/10.1093/nar/gkt1182
Article CAS PubMed Google Scholar
Burley SK (2000) An overview of structural genomics. Nat Struct Biol 7(Suppl):932–934. https://doi.org/10.1038/80697
Article CAS PubMed Google Scholar
can SAR.ai. https://cansar.ai/. Cited 7 July 2023
Carles F, Bourg S, Meyer C, et al. (2018) PKIDB: A Curated, Annotated and Updated Database of Protein Kinase Inhibitors in Clinical Trials. Molecules 23. https://doi.org/10.3390/molecules23040908
Casaletto J, Maglic D, Toure BB et al (2021) Abstract 1455: RLY-4008, a novel precision therapy for FGFR2-driven cancers designed to potently and selectively inhibit FGFR2 and FGFR2 resistance mutations. Can Res 81:1455–1455. https://doi.org/10.1158/1538-7445.Am2021-1455
Caspi R, Billington R, Fulcher CA et al (2018) The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res 46:D633–D639. https://doi.org/10.1093/nar/gkx935
Comments (0)