Agarwal G, Kudapa H, Ramalingam A et al (2020) Epigenetics and epigenomics: underlying mechanisms, relevance, and implications in crop improvement. Funct Integr Genomics 20:739–761. https://doi.org/10.1007/s10142-020-00756-7
Article PubMed CAS Google Scholar
Agtuca BJ, Stopka SA, Tuleski TR et al (2020) In-Situ metabolomic analysis of Setaria viridis roots colonized by beneficial endophytic Bacteria. Mol Plant-Micro Interact 33:272–283. https://doi.org/10.1094/MPMI-06-19-0174-R
Ahuja KG, Nath P, Swamy KRM (2010) Foods and Nutrition, 1st edn. Studium, New Delhi, India
Ajeesh Krishna TP, Maharajan T, Ceasar SA (2022) Improvement of millets in the post-genomic era. Physio Mol Bio Plants 28:669–685. https://doi.org/10.1007/s12298-022-01158-8
Ambavane AR, Sawardekar SV, Sawantdesai SA, Gokhale NB (2015) Studies on mutagenic effectiveness and efficiency of gamma rays and its effect on quantitative traits in finger millet (Eleusine coracana L. Gaertn). J Radiat Res Appl Sci 8:120–125. https://doi.org/10.1016/j.jrras.2014.12.004
Antony Ceasar S, Ignacimuthu S (2011) Agrobacterium-mediated transformation of finger millet (Eleusine coracana (L.) Gaertn.) Using shoot apex explants. Plant Cell Rep 30:1759–1770. https://doi.org/10.1007/s00299-011-1084-0
Article PubMed CAS Google Scholar
Ashraf MF, Hou D, Hussain Q et al (2022) Entailing the Next-Generation sequencing and metabolome for sustainable agriculture by improving Plant Tolerance. Int J Mol Sci 23:1–33. https://doi.org/10.3390/ijms23020651
Babu BK, Dinesh P, Agrawal PK et al (2014) Comparative Genomics and Association Mapping Approaches for Blast Resistant Genes in Finger Millet using SSRs. PLoS ONE 9:1–12. https://doi.org/10.1371/journal.pone.0099182
Baggett JP, Tillett RL, Cooper EA, Yerka MK (2021) De novo identification and targeted sequencing of SSRs efficiently fingerprints Sorghum bicolor sub-population identity. PLoS ONE 16:1–18. https://doi.org/10.1371/journal.pone.0248213
Banerjee S (2012) Finger millet (Eleusine coracana) polyphenols: investigation of their antioxidant capacity and antimicrobial activity. Afric J Food Sci 6:362–374. https://doi.org/10.5897/ajfs12.031
Banshidhar PS, Singh A et al (2023) The potentialities of omics resources for millet improvement. Funct Integr Genomics 23:210. https://doi.org/10.1007/s10142-023-01149-2
Article PubMed CAS Google Scholar
Bayer GYa, Yemets AI, Blume YB (2014) Obtaining the transgenic lines of finger millet Eleusine coracana (L.). With dinitroaniline resistance. Cytol Genet 48:139–144. https://doi.org/10.3103/S0095452714030025
Bekkering CS, Tian L (2019) Thinking outside of the cereal box: breeding underutilized (Pseudo)Cereals for Improved Human Nutrition. Front Genet 10:1–7. https://doi.org/10.3389/fgene.2019.01289
Bellato S, Ciccoritti R, Del Frate V et al (2013) Influence of genotype and environment on the content of 5-n alkylresorcinols, total phenols and on the antiradical activity of whole durum wheat grains. J Cereal Sci 57:162–169. https://doi.org/10.1016/j.jcs.2012.11.003
Bennetzen JL, Schmutz J, Wang H et al (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30:555–561. https://doi.org/10.1038/nbt.2196
Article PubMed CAS Google Scholar
Bhave KG, Dalvi VV, Thaware BL et al (2016) Mutagenesis in proso millet (Panicum miliaceum L). Int J Chem Stud 5:1635–1638
Bidinger FR, Serraj R, Rizvi SMH et al (2005) Field evaluation of drought tolerance QTL effects on phenotype and adaptation in pearl millet [Pennisetum glaucum (L.) R. Br.] Topcross hybrids. Field Crops Res 94:14–32. https://doi.org/10.1016/j.fcr.2004.11.006
Boutrot F, Zipfel C (2017) Function, Discovery, and Exploitation of Plant Pattern Recognition receptors for Broad-Spectrum Disease Resistance. Annu Rev Phytopathol 55:257–286. https://doi.org/10.1146/annurev-phyto-080614-120106
Article PubMed CAS Google Scholar
Burton GW, Powell J (1966) Morphological and cytological response of Pear Millet, Pennisetum typhoides to Thermal Neutron and Ethyl Methane Sulfonate seed treatments. Crop Sci 6:180–182. https://doi.org/10.2135/cropsci1966.0011183X000600020021x
Burton GW, PowellResearch Geneticist JB, HannaResearch Geneticist WW (1974) Effect of recurrent mutagen seed treatments on mutation frequency and combining ability for forage yield in pearl millet (Pennisetum americanum (L.) K. Schum). Radiation Bot 14:323–335. https://doi.org/10.1016/S0033-7560(74)80024-4
Cannarozzi G, Plaza-Wüthrich S, Esfeld K et al (2014) Genome and transcriptome sequencing identifies breeding targets in the orphan crop tef (Eragrostis tef). BMC Genomics 15:581. https://doi.org/10.1186/1471-2164-15-581
Article PubMed PubMed Central Google Scholar
Cao X, Hu Y, Song J et al (2022) Transcriptome Sequencing and Metabolome Analysis reveals the molecular mechanism of Drought stress in Millet. Int J Mol Sci 23:10792. https://doi.org/10.3390/ijms231810792
Article PubMed PubMed Central CAS Google Scholar
Ceasar A (2022) Genome-editing in millets: current knowledge and future perspectives. Mol Biol Rep 49:773–781. https://doi.org/10.1007/s11033-021-06975-w
Article PubMed CAS Google Scholar
Chakrabarti S, Jahandideh F, Davidge ST, Wu J (2018) Milk-derived tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) enhance insulin sensitivity and prevent insulin resistance in 3T3-F442A preadipocytes. J Agric Food Chem 66:10179–10187. https://doi.org/10.1021/acs.jafc.8b02051
Article PubMed CAS Google Scholar
Chandrasekara A, Shahidi F (2010) Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity. J Agric Food Chem 58:6706–6714. https://doi.org/10.1021/jf100868b
Article PubMed CAS Google Scholar
Chandrasekara A, Shahidi F (2011) Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MSn. J Funct Foods 3:144–158. https://doi.org/10.1016/j.jff.2011.03.007
Chanwala J, Satpati S, Dixit A et al (2020) Genome-wide identification and expression analysis of WRKY transcription factors in pearl millet (Pennisetum glaucum) under dehydration and salinity stress. BMC Genomics 21:231. https://doi.org/10.1186/s12864-020-6622-0
Article PubMed PubMed Central CAS Google Scholar
Cheng Z, Sun Y, Yang S et al (2021) Establishing in planta haploid inducer line by edited SiMTL in foxtail millet (Setaria italica). Plant Biotechnol J 19:1089–1091. https://doi.org/10.1111/pbi.13584
Article PubMed PubMed Central Google Scholar
CHETHAN S, MALLESHI N (2007) Finger millet polyphenols: optimization of extraction and the effect of pH on their stability. Food Chem 105:862–870. https://doi.org/10.1016/j.foodchem.2007.02.012
Das IK, Rakshit S (2016) Millets, their importance, and production constraints. Biotic Stress Resistance in millets. Elsevier, pp 3–19
de Dal’Molin O, Orellana CG, Gebbie C L, et al (2016) Metabolic Reconstruction of Setaria italica: A systems Biology Approach for integrating tissue-specific omics and Pathway Analysis of Bioenergy Grasses. Front Plant Sci 7:1–20. https://doi.org/10.3389/fpls.2016.01138
de Souza LP, Borghi M, Fernie A (2020) Plant single-cell Metabolomics—challenges and perspectives. Int J Mol Sci 21:1–17. https://doi.org/10.3390/ijms21238987
Dudhate A, Shinde H, Tsugama D et al (2018) Transcriptomic analysis reveals the differentially expressed genes and pathways involved in drought tolerance in pearl millet [Pennisetum glaucum (L.) R. Br]. PLoS ONE 13:1–14. https://doi.org/10.1371/journal.pone.0195908
Comments (0)