Berman A, Su N, Li Z, Landau U, Chakraborty J, Gerbi N, Liu J, Qin Y, Yuan B, Wei W, Yanai O, Mayrose I, Zhang Y, Shani E (2025) Construction of multi-targeted CRISPR libraries in tomato to overcome functional redundancy at genome-scale level. Nat Commun 16(1):4111. https://doi.org/10.1038/s41467-025-59280-6
Article PubMed PubMed Central CAS Google Scholar
Bheemanahalli R, Ramamoorthy P, Poudel S, Samiappan S, Wijewardane N, Reddy KR (2022) Effects of drought and heat stresses during reproductive stage on pollen germination, yield, and leaf reflectance properties in maize (L). Plant Direct 6(8):e434. https://doi.org/10.1002/pld3.434
Article PubMed PubMed Central CAS Google Scholar
Buchholzer M, Frommer WB (2023) An increasing number of countries regulate genome editing in crops. New Phytol 237(1):12–15. https://doi.org/10.1111/nph.18333
Heikonen S, Heino M, Jalava M, Siebert S, Viviroli D, Kummu M (2025) Climate change threatens crop diversity at low latitudes. Nat Food 6(4):331–342. https://doi.org/10.1038/s43016-025-01135-w
Article PubMed PubMed Central Google Scholar
Hwarari D, Radani Y, Ke Y, Chen J, Yang L (2024) CRISPR/Cas genome editing in plants: mechanisms, applications, and overcoming bottlenecks. Funct Integr Genom 24(2):50. https://doi.org/10.1007/s10142-024-01314-1
Impa SM, Raju B, Hein NT, Sandhu J, Prasad PVV, Walia H, Jagadish SVK (2021) High night temperature effects on wheat and rice: current status and way forward. Plant Cell Environ 44(7):2049–2065. https://doi.org/10.1111/pce.14028
Article PubMed CAS Google Scholar
Jagadish SVK (2020) Heat stress during flowering in cereals– effects and adaptation strategies. New Phytol 226(6):1567–1572. https://doi.org/10.1111/nph.16429
Article PubMed CAS Google Scholar
Kan Y, Mu X-R, Zhang H, Gao J, Shan J-X, Ye W-W, Lin H-X (2022) TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis. Nat Plants 8(1):53–67. https://doi.org/10.1038/s41477-021-01039-0
Article PubMed CAS Google Scholar
Kearney J (2010) Food consumption trends and drivers. Philosophical Trans Royal Soc B: Biol Sci 365(1554):2793–2807. https://doi.org/10.1098/rstb.2010.0149
Li T, Yang X, Yu Y, Si X, Zhai X, Zhang H, Dong W, Gao C, Xu C (2018) Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol 36(12):1160–1163. https://doi.org/10.1038/nbt.4273
Li C, Chu W, Gill RA, Sang S, Shi Y, Hu X, Yang Y, Zaman QU, Zhang B, Genomics (2022) Proteom Bioinf 21 (1):108–126. https://doi.org/10.1016/j.gpb.2022.02.006
Li L, Zhang D, Zhang Z, Zhang B (2025a) CRISPR/Cas: a powerful tool for designing and improving oil crops. Trends Biotechnol 43(4):773–789. https://doi.org/10.1016/j.tibtech.2024.09.007
Article PubMed CAS Google Scholar
Li W, Yang K, Hu C, Abbas W, Zhang J, Xu P, Cheng B, Zhang J, Yin W, Shalmani A, Qu L, Lv Q, Li B, He Y, Lai X, Xiong L, Zhang Q, Li Y (2025b) A natural gene on-off system confers field thermotolerance for grain quality and yield in rice. Cell. https://doi.org/10.1016/j.cell.2025.04.011
Article PubMed PubMed Central Google Scholar
Lin Y, Zhu Y, Cui Y, Qian H, Yuan Q, Chen R, Lin Y, Chen J, Zhou X, Shi C, He H, Hu T, Gu C, Yu X, Zhu X, Wang Y, Qian Q, Zhang C, Wang F, Shang L (2023) Identification of natural allelic variation in TTL1 controlling thermotolerance and grain size by a rice super pan-genome. J Integr Plant Biol 65(12):2541–2551. https://doi.org/10.1111/jipb.13568
Article PubMed CAS Google Scholar
Lu H-P, Liu X-H, Wang M-J, Zhu Q-Y, Lyu Y-S, Xu J-H, Liu J-X (2025) The NAT1–bHLH110–CER1/CER1L module regulates heat stress tolerance in rice. Nat Genet 57(2):427–440. https://doi.org/10.1038/s41588-024-02065-2
Article PubMed CAS Google Scholar
Mao X, Yu H, Xue J, Zhang L, Zhu Q, Lv S, Feng Y, Jiang L, Zhang J, Sun B, Yu Y, Li C, Ma Y, Liu Q (2025) OsRHS negatively regulates rice heat tolerance at the flowering stage by interacting with the HSP protein cHSP70-4. Plant Cell Environ 48(1):350–364. https://doi.org/10.1111/pce.15152
Article PubMed CAS Google Scholar
Moreno AA, Mukhtar MS, Blanco F, Boatwright JL, Moreno I, Jordan MR, Chen Y, Brandizzi F, Dong X, Orellana A, Pajerowska-Mukhtar KM (2012) IRE1/bZIP60-Mediated unfolded protein response plays distinct roles in plant immunity and abiotic stress responses. PLoS ONE 7(2):e31944. https://doi.org/10.1371/journal.pone.0031944
Article PubMed PubMed Central CAS Google Scholar
Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences 101 (27):9971–9975. https://doi.org/10.1073/pnas.0403720101
Steele K, Quinton-Tulloch M, Vyas D, Witcombe J (2024) Thousands of trait-specific KASP markers designed for diverse breeding applications in rice (Oryza sativa). G3 genes|genomes|genetics| genes|genomes|genetics| genes|genomes|genetics. 15(1). https://doi.org/10.1093/g3journal/jkae251
Voss-Fels KP, Stahl A, Wittkop B, Lichthardt C, Nagler S, Rose T, Chen T-W, Zetzsche H, Seddig S, Majid Baig M, Ballvora A, Frisch M, Ross E, Hayes BJ, Hayden MJ, Ordon F, Leon J, Kage H, Friedt W, Stützel H, Snowdon RJ (2019) Breeding improves wheat productivity under contrasting agrochemical input levels. Nat Plants 5(7):706–714. https://doi.org/10.1038/s41477-019-0445-5
Wang L, O’Conner S, Tanvir R, Zheng W, Cothron S, Towery K, Bi H, Ellison EE, Yang B, Voytas DF, Li L (2025) CRISPR/Cas9-based editing of NF-YC4 promoters yields high-protein rice and soybean. New Phytol 245(5):2103–2116. https://doi.org/10.1111/nph.20141
Article PubMed CAS Google Scholar
Waqas MAB, Awan MJA, Amin I, Arif M, Mukhtar Z, Mansoor S (2025) Engineering high yield basmati rice by editing multiple negative regulators of yield. Mol Biol Rep 52(1):545. https://doi.org/10.1007/s11033-025-10660-7
Article PubMed CAS Google Scholar
Wen J, Qin Z, Sun L, Zhang Y, Wang D, Peng H, Yao Y, Hu Z, Ni Z, Sun Q, Xin M (2023) Alternative splicing of modulates heat shock protein–mediated translational regulation in response to heat stress in wheat. New Phytol 239(6):2235–2247. https://doi.org/10.1111/nph.19100
Article PubMed CAS Google Scholar
Zhang H, Zhou J-F, Kan Y, Shan J-X, Ye W-W, Dong N-Q, Guo T, Xiang Y-H, Yang Y-B, Li Y-C, Zhao H-Y, Yu H-X, Lu Z-Q, Guo S-Q, Lei J-J, Liao B, Mu X-R, Cao Y-J, Yu J-J, Lin Y, Lin H-X (2022) A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance. Science 376(6599):1293–1300. https://doi.org/10.1126/science.abo5721
Article PubMed CAS Google Scholar
Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, Huang M, Yao Y, Bassu S, Ciais P, Durand JL, Elliott J, Ewert F, Janssens IA, Li T, Lin E, Liu Q, Martre P, Müller C, Peng S, Peñuelas J, Ruane AC, Wallach D, Wang T, Wu D, Liu Z, Zhu Y, Zhu Z, Asseng S (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci 114(35):9326–9331. https://doi.org/10.1073/pnas.1701762114
Comments (0)