Fecal microbiota transplantation from patients with polycystic ovary syndrome induces metabolic disorders and ovarian dysfunction in germ-free mice

Azziz R, Carmina E, Chen Z, Dunaif A, Laven JS, Legro RS, et al. Polycystic ovary syndrome. Nat Reviews Disease Primers. 2016;2:16057. https://doi.org/10.1038/nrdp.2016.57.

Article  PubMed  Google Scholar 

Dumesic DA, Oberfield SE, Stener-Victorin E, Marshall JC, Laven JS, Legro RS. Scientific Statement on the Diagnostic Criteria, Epidemiology, Pathophysiology, and Molecular Genetics of Polycystic Ovary Syndrome. Endocr Rev. 2015;36(5):487–525. https://doi.org/10.1210/er.2015-1018.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoeger KM, Dokras A, Piltonen T. Update on PCOS: consequences, challenges, and Guiding Treatment. J Clin Endocrinol Metab. 2021;106(3):e1071–83. https://doi.org/10.1210/clinem/dgaa839.

Article  PubMed  Google Scholar 

Thackray VG, Sex. Microbes, and polycystic ovary syndrome. Trends in endocrinology and metabolism. TEM. 2019;30(1):54–65. https://doi.org/10.1016/j.tem.2018.11.001.

Article  CAS  PubMed  Google Scholar 

Legro RS, Driscoll D, Strauss JF 3rd, Fox J, Dunaif A. Evidence for a genetic basis for hyperandrogenemia in polycystic ovary syndrome. Proc Natl Acad Sci USA. 1998;95(25):14956–60. https://doi.org/10.1073/pnas.95.25.14956.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dapas M, Lin FTJ, Nadkarni GN, Sisk R, Legro RS, Urbanek M, et al. Distinct subtypes of polycystic ovary syndrome with novel genetic associations: an unsupervised, phenotypic clustering analysis. PLoS Med. 2020;17(6):e1003132. https://doi.org/10.1371/journal.pmed.1003132.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Day F, Karaderi T, Jones MR, Meun C, He C, Drong A, et al. Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria. PLoS Genet. 2018;14(12):e1007813. https://doi.org/10.1371/journal.pgen.1007813.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021;19(1):55–71. https://doi.org/10.1038/s41579-020-0433-9.

Article  CAS  PubMed  Google Scholar 

Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JF, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913–e67. https://doi.org/10.1053/j.gastro.2012.06.031.

Article  CAS  PubMed  Google Scholar 

Tremellen K, Pearce K. Dysbiosis of gut microbiota (DOGMA)--a novel theory for the development of polycystic ovarian syndrome. Med Hypotheses. 2012;79(1):104–12. https://doi.org/10.1016/j.mehy.2012.04.016.

Article  PubMed  Google Scholar 

Wang L, Zhou J, Gober HJ, Leung WT, Huang Z, Pan X, et al. Alterations in the intestinal microbiome associated with PCOS affect the clinical phenotype. Biomed Pharmacotherapy = Biomedecine Pharmacotherapie. 2021;133:110958. https://doi.org/10.1016/j.biopha.2020.110958.

Article  CAS  PubMed  Google Scholar 

Giampaolino P, Foreste V, Di Filippo C, Gallo A, Mercorio A, Serafino P, et al. Microbiome and PCOS: state-of-art and future aspects. Int J Mol Sci. 2021;22(4). https://doi.org/10.3390/ijms22042048.

Torres PJ, Siakowska M, Banaszewska B, Pawelczyk L, Duleba AJ, Kelley ST, Thackray VG. Gut Microbial Diversity in Women with Polycystic Ovary Syndrome correlates with hyperandrogenism. J Clin Endocrinol Metab. 2018;103(4):1502–11. https://doi.org/10.1210/jc.2017-02153.

Article  PubMed  PubMed Central  Google Scholar 

Qi X, Yun C, Sun L, Xia J, Wu Q, Wang Y, et al. Gut microbiota-bile acid-interleukin-22 axis orchestrates polycystic ovary syndrome. Nat Med. 2019;25(8):1225–33. https://doi.org/10.1038/s41591-019-0509-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yin G, Chen F, Chen G, Yang X, Huang Q, Chen L, et al. Alterations of bacteriome, mycobiome and metabolome characteristics in PCOS patients with normal/overweight individuals. J Ovarian Res. 2022;15(1):117. https://doi.org/10.1186/s13048-022-01051-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodriguez Paris V, Wong XYD, Solon-Biet SM, Edwards MC, Aflatounian A, Gilchrist RB, et al. The interplay between PCOS pathology and diet on gut microbiota in a mouse model. Gut Microbes. 2022;14(1):2085961. https://doi.org/10.1080/19490976.2022.2085961.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Graham ME, Herbert WG, Song SD, Raman HN, Zhu JE, Gonzalez PE, et al. Gut and vaginal microbiomes on steroids: implications for women’s health. Trends Endocrinol Metab. 2021;32(8):554–65. https://doi.org/10.1016/j.tem.2021.04.014.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han Q, Wang J, Li W, Chen ZJ, Du Y. Androgen-induced gut dysbiosis disrupts glucolipid metabolism and endocrinal functions in polycystic ovary syndrome. Microbiome. 2021;9(1):101. https://doi.org/10.1186/s40168-021-01046-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gupta A, Khanna S, Fecal Microbiota Transplantation. JAMA. 2017;318(1):102. https://doi.org/10.1001/jama.2017.6466.

Article  PubMed  Google Scholar 

Zhang F, Cui B, He X, Nie Y, Wu K, Fan D. Microbiota transplantation: concept, methodology and strategy for its modernization. Protein Cell. 2018;9(5):462–73. https://doi.org/10.1007/s13238-018-0541-8.

Article  PubMed  PubMed Central  Google Scholar 

Lundberg R, Toft MF, August B, Hansen AK, Hansen CH. Antibiotic-treated versus germ-free rodents for microbiota transplantation studies. Gut Microbes. 2016;7(1):68–74. https://doi.org/10.1080/19490976.2015.1127463.

Article  PubMed  PubMed Central  Google Scholar 

Han D, Walsh MC, Kim KS, Hong SW, Lee J, Yi J, et al. Microbiota-Independent Ameliorative effects of antibiotics on spontaneous Th2-Associated Pathology of the small intestine. PLoS ONE. 2015;10(2):e0118795. https://doi.org/10.1371/journal.pone.0118795.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han D, Walsh MC, Cejas PJ, Dang NN, Kim YF, Kim J, et al. Dendritic cell expression of the signaling molecule TRAF6 is critical for gut microbiota-dependent immune tolerance. Immunity. 2013;38(6):1211–22. https://doi.org/10.1016/j.immuni.2013.05.012.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J, Wei H. Establishment of an efficient germ-free animal system to support functional microbiome research. Sci China Life Sci. 2019;62(10):1400–3. https://doi.org/10.1007/s11427-019-9832-9.

Article  PubMed  Google Scholar 

Huang F, Chen J, Zhou M, Tang R, Xu S, Zhao Y, et al. Dysbiosis of the oral-gut microbiome in PCOS patients and its implication for noninvasive diagnosis. Clin Transl Med. 2024;14(8):e70001. https://doi.org/10.1002/ctm2.70001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Revised. 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Human reproduction (Oxford, England). 2004;19(1):41 – 7; https://doi.org/10.1093/humrep/deh098

McInnes P, Cutting M. Core microbiome sampling protocol A HMP Protocol # 07–001. 2010.

Yuan X, Wang R, Han B, Sun C, Chen R, Wei H, et al. Functional and metabolic alterations of gut microbiota in children with new-onset type 1 diabetes. Nat Commun. 2022;13(1):6356. https://doi.org/10.1038/s41467-022-33656-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boehme M, Guzzetta KE, Bastiaanssen TFS, van de Wouw M, Moloney GM, Gual-Grau A, et al. Microbiota from young mice counteracts selective age-associated behavioral deficits. Nat Aging. 2021;1(8):666–76. https://doi.org/10.1038/s43587-021-00093-9.

Article 

Comments (0)

No login
gif