Vitiello A, Ferrara, Boccellino M, Ponzo A, Cimmino C, Comberiati E, Zovi A, Clemente S, Sabbatucci M. Antifungal drug resistance: an emergent health threat. Biomedicines. 2023;11(4):1063.
Kitaya S, Kanamori H, Katori Y, Tokuda K. Clinical features and outcomes of persistent candidemia caused by Candida albicans versus non-albicans Candida species: a focus on antifungal resistance and follow-up blood cultures. Microorganisms. 2023;11(4):928.
Hendrickson JA, Hu C, Aitken SL, Beyda N. Antifungal resistance: a concerning trend for the present and future. Curr Infect Dis Rep. 2019;21(12):47.
Berger S, El Chazli Y, Babu AF, Coste AT. Azole resistance in Aspergillus fumigatus: a consequence of antifungal use in agriculture? Front Microbiol. 2017;8:1024.
Schwartz IS, Patterson TF. The emerging threat of antifungal resistance in transplant infectious diseases. Curr Infect Dis Rep. 2018;20(3):2.
EclinicalMedicine. Antimicrobial resistance: a top ten global public health threat. eClinicalMedicine. 2021;41:101221.
Tarín-Pelló A, Suay-García B, Pérez-Gracia MT. Antibiotic resistant bacteria: current situation and treatment options to accelerate the development of a new antimicrobial arsenal. Expert Rev anti-infective Therapy. 2022;20(8):1095–108.
Logan A, Wolfe A, Williamson JC. Antifungal resistance and the role of new therapeutic agents. Curr Infect Dis Rep. 2022;24(9):105–16.
PubMed PubMed Central Google Scholar
Sarkar P, Yarlagadda V, Ghosh C, Haldar J. A review on cell wall synthesis inhibitors with an emphasis on glycopeptide antibiotics. MedChemComm. 2017;8(3):516–33.
PubMed PubMed Central CAS Google Scholar
Andersson DI, Hughes D, Kubicek-Sutherland JZ. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist Updates. 2016;26:43–57.
Browne K, Chakraborty S, Chen R, Willcox MD, Black DS, Walsh WR, Kumar N. A new era of antibiotics: the clinical potential of antimicrobial peptides. Int J Mol Sci 2020;21(19):7047.
Mabrouk DM. Antimicrobial peptides: features, applications and the potential use against covid-19. Mol Biol Rep. 2022;49(10):10039–50.
PubMed PubMed Central CAS Google Scholar
Ioannou P, Baliou S, Kofteridis DP. Antimicrobial peptides in infectious diseases and beyond—a narrative review. Life (Basel). 2023;13(8):1651.
Adamu Y, Puig-Asensio M, Dabo B, Schweizer ML. Comparative effectiveness of daptomycin versus vancomycin among patients with methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections: a systematic literature review and meta-analysis. PLoS One. 2024;19(2):e0293423.
Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, Kaplan SL, Karchmer AW, Levine DP, Murray BE, et al. Clinical practice guidelines by the infectious diseases society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: executive summary. Clin Infect Dis. 2011;52(3):285–92.
Huang HW. DAPTOMYCIN, its membrane-active mechanism vs. that of other antimicrobial peptides. Biochim Biophys Acta Biomembr. 2020;1862(10):183395.
Fernández de Ullivarri M, Arbulu S, Garcia-Gutierrez E, Cotter PD. Antifungal peptides as therapeutic agents. Front Cell Infect Microbiol. 2020;10:105.
Perlin DS. Resistance to echinocandin-class antifungal drugs. Drug Resist Updates. 2007;10(3):121–30.
Chen SC, Slavin MA, Sorrell TC. Echinocandin antifungal drugs in fungal infections: a comparison. Drugs. 2011;71(1):11–41.
Pound MW, Townsend ML, Dimondi V, Wilson D, Drew RH. Overview of treatment options for invasive fungal infections. Med Mycol. 2011;49(6):561–80.
Beyda ND, Lewis RE, Garey KW. Echinocandin resistance in Candida species: mechanisms of reduced susceptibility and therapeutic approaches. Ann Pharmacother. 2012;46(7–8):1086–96.
Chen CH, Lu TK. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiot (Basel). 2020;9(1):24.
Larkin M. Daptomycin approved for skin and skin-structure infections. Lancet Infect Dis. 2003;3(11):677.
Yang H, Ma R, Chen J, Xie Q, Luo W, Sun P, Liu Z, Guo J. Discovery of Melittin as triple-action agent: broad-spectrum antibacterial, anti-biofilm, and potential anti-quorum sensing activities. Molecules. 2024;29(3):558.
Farzi N, Oloomi M, Bahramali G, Siadat SD, Bouzari S. Antibacterial properties and efficacy of LL-37 fragment GF-17D3 and scolopendin A2 peptides against resistant clinical strains of Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii in vitro and in vivo model studies. Probiotics Antimicrob Proteins. 2024;16(3):796–814.
Wei J, Cao X, Qian J, Liu Z, Wang X, Su Q, Wang Y, Xie R, Li X. Evaluation of antimicrobial peptide LL-37 for treatment of Staphylococcus aureus biofilm on titanium plate. Med (Baltim). 2021;100(44):e27426.
Lum KY, Tay ST, Le CF, Lee VS, Sabri NH, Velayuthan RD, Hassan H, Sekaran SD. Activity of novel synthetic peptides against Candida albicans. Sci Rep. 2015;5:9657.
Lee J, Lee DG. Melittin triggers apoptosis in Candida albicans through the reactive oxygen species-mediated mitochondria/caspase-dependent pathway. FEMS Microbiol Lett. 2014;355(1):36–42.
Rather IA, Sabir JSM, Asseri AH, Ali S. Antifungal activity of human Cathelicidin LL-37, a membrane disrupting peptide, by triggering oxidative stress and cell cycle arrest in Candida auris. J fungi (Basel). 2022;8(2):204.
Chou S, Li Q, Wu H, Li J, Chang YF, Shang L, Li J, Wang Z, Shan A. Selective antifungal activity and fungal biofilm Inhibition of Tryptophan center symmetrical short peptide. Int J Mol Sci. 2021;22(15):8231.
Dong N, Chou S, Li J, Xue C, Li X, Cheng B, Shan A, Xu L. Short symmetric-end antimicrobial peptides centered on β-Turn amino acids unit improve selectivity and stability. Front Microbiol. 2018;9:2832.
PubMed PubMed Central Google Scholar
Zhu Y, Akhtar MU, Li B, Chou S, Shao C, Li J, Shan A. The design of cell-selective Tryptophan and arginine-rich antimicrobial peptides by introducing hydrophilic uncharged residues. Acta Biomater. 2022;153:557–72.
Tan R, Wang M, Xu H, Qin L, Wang J, Cui P, Ru S. Improving the activity of antimicrobial peptides against aquatic pathogen bacteria by amino acid substitutions and changing the ratio of hydrophobic residues. Front Microbiol. 2021;12:773076.
Saint Jean KD, Henderson KD, Chrom CL, Abiuso LE, Renn LM, Caputo GA. Effects of hydrophobic amino acid substitutions on antimicrobial peptide behavior. Probiotics Antimicrob Proteins. 2017;10(3):408–19.
Zhao L, Huang Y, Gao S, Cui Y, He D, Wang L, Chen Y. Comparison on effect of hydrophobicity on the antibacterial and antifungal activities of α-helical antimicrobial peptides. Sci China Chem. 2013;56(9):1307–14.
Kim SJ, Schaefer J. Hydrophobic side-chain length determines activity and conformational heterogeneity of a Vancomycin derivative bound to the cell wall of Staphylococcus aureus. Biochemistry. 2008;47(38):10155–216.
Wu G, Fan X, Li L, Wang H, Ding J, Hongbin W, Zhao R, Gou L, Shen Z, Xi T. Interaction of antimicrobial peptide s-thanatin with lipopolysaccharide in vitro and in an experimental mouse model of septic shock caused by a multidrug-resistant clinical isolate of Escherichia coli. Int J Antimicrob Agents. 2010;35(3):250–4.
Khemaissa S, Walrant A, Sagan S. Tryptophan, more than just an interfacial amino acid in the membrane activity of cationic cell-penetrating and antimicrobial peptides. Q Rev Biophys. 2022;55:e10.
Sun H, Greathouse DV, Andersen OS, Koeppe RE. The preference of Tryptophan for membrane interfaces. J Biol Chem. 2008;283(32):22233–43.
PubMed PubMed Central CAS Google Scholar
Al Mughram MH, Catalano C, Herrington NB, Safo MK, Kellogg GE. 3D interaction homology: the hydrophobic residues alanine, isoleucine, leucine, proline and valine play different structural roles in soluble and membrane proteins. Front Mol Biosci. 2023;10:1116868.
Radhakrishnan N, Kumar SD, Shin S-Y, Yang S. Enhancing selective antimicrobial and antibiofilm activities of Melittin through 6-aminohexanoic acid substitution. Biomolecules. 2024;14(6):699.
Chow A, Win NN, Ng PY, Lee W, Win MK. Vancomycin-resistant enterococci with reduced daptomycin susceptibility in singapore: prevalence and associated factors. Epidemiol Infect. 2016;144(12):2540–5.
Storm DR, Strominger JL. Complex formation between bacitracin peptides and isoprenyl pyrophosphates. J Biol Chem. 1973;248(11):3940–5.
Ming LJ, Epperson JD. Metal binding and structure-activity relationship of the metalloantibiotic peptide bacitracin. J Inorg Biochem. 2002;91(1):46–58.
Gallardo-Godoy A, Hansford KA, Muldoon C, Becker B, Elliott AG, Huang JX, Pelingon R, Butler MS, Blaskovich MAT, Cooper MA. Structure-function studies of polymyxin B lipononapeptides. Molecules. 2019;24(3):553.
Tsuji BT, Pogue JM, Zavascki AP, Paul M, Daikos GL, Forrest A, Giacobbe DR, Viscoli C, Giamarellou H, Karaiskos I, et al. International consensus guidelines for the optimal use of the polymyxins: endorsed by the American college of clinical pharmacy (ACCP), European society of clinical microbiology and infectious diseases (ESCMID), infectious diseases society of America (IDSA), international society for Anti-infective Pharmacology (ISAP), society of critical care medicine (SCCM), and society of infectious diseases pharmacists (SIDP). Pharmacotherapy: J Hum Pharmacol Drug Therapy. 2019;39(1):10–39.
Yasir M, Dutta D, Hossain KR, Chen R, Ho KKK, Kuppusamy R, Clarke RJ, Kumar N, Willcox MDP. Mechanism of action of surface immobilized antimicrobial peptides against Pseudomonas aeruginosa. Front Microbiol. 2020;10:3053.
Giuliani A, Pirri G, Rinaldi AC. Antimicrobial peptides: the LPS connection.Methods Mol Biol. 2010;618:137–54.
Nayab S, Aslam MA, Rahman Su, Sindhu ZD, Sajid S, Zafar N, Razaq M, Kanwar R, Amanullah. A review of antimicrobial peptides: its function, mode of action and therapeutic potential. Int J Pept Res Ther. 2022;28(1):46.
Abdullah SJ, Yan BTS, Palanivelu N, Dhanabal VB, Bifani JP, Bhattacharjya S. Outer-membrane permeabilization, LPS transport inhibition: activity, interactions, and structures of Thanatin derived antimicrobial peptides. Int J Mol Sci. 2024;25(4):2122.
Comments (0)