Artesunate-driven autophagy: a shield against liver hypoxia/reoxygenation insult in rats via modulation of GLP1R, the chief metabolic kinase AMPK, mTOR, ULK1, P70S6K, cyclin D1, Akt, and GSK3β

Cursio R, Colosetti P, Gugenheim J (2015) Autophagy and liver ischemia-reperfusion injury. Biomed Res Int 2015:417590. https://doi.org/10.1155/2015/417590

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gracia-Sancho J, Casillas-Ramirez A, Peralta C (2015) Molecular pathways in protecting the liver from ischaemia/reperfusion injury: a 2015 update. Clin Sci (Lond) 129:345–362. https://doi.org/10.1042/CS20150223

Article  PubMed  CAS  Google Scholar 

Konishi T, Lentsch AB (2017) Hepatic ischemia/reperfusion: mechanisms of tissue injury, repair, and regeneration. Gene Expr J Liver Res 17:277–287. https://doi.org/10.3727/105221617X15042750874156

Article  CAS  Google Scholar 

Mohamed DZ, Aedes El, Sokar SS, Shebl AM, Abu-Risha SES (2021) Targeting autophagy to modulate hepatic ischemia/reperfusion injury: A comparative study between octreotide and melatonin as autophagy modulators through AMPK/PI3K/AKT/mTOR/ULK1 and Keap1/Nrf2 signaling pathways in rats. Eur J Pharmacol 897:173920. https://doi.org/10.1016/j.ejphar.2021.173920

Article  PubMed  CAS  Google Scholar 

Bach M, Larance M, James DE, Ramm G (2011) The serine/threonine kinase ULK1 is a target of multiple phosphorylation events. Biochem J 440:283–291. https://doi.org/10.1042/BJ20101894

Article  PubMed  CAS  Google Scholar 

Suzuki T, Yoshidome H, Kimura F, Shimizu H, Ohtsuka M, Takeuchi D et al (2011) Hepatocyte apoptosis is enhanced after ischemia/reperfusion in the steatotic liver. J Clin Biochem Nutr 48:142–148. https://doi.org/10.3164/jcbn.10-74

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang J, Ahn I, Fischer TD, Byeon J, Dunn WA Jr, Behrns KE et al (2011) Autophagy suppresses age-dependent ischemia and reperfusion injury in livers of mice. Gastroenterology 141:2188–2199. https://doi.org/10.1053/j.gastro.2011.08.005

Article  PubMed  CAS  Google Scholar 

Sun K, Xie X, Liu Y, Han Z, Zhao X, Cai N et al (2013) Autophagy lessens ischemic liver injury by reducing oxidative damage. Cell Biosci 3:1–15. https://doi.org/10.1186/2045-3701-3-26

Article  CAS  Google Scholar 

Yang J, Wang Y, Sui M, Liu F, Fu Z, Wang QX (2015) Tri-iodothyronine preconditioning protects against liver ischemia reperfusion injury through the regulation of autophagy by the MEK/ERK/mTORC1 axis. Biochem Biophys Res Commun 467:704–710. https://doi.org/10.1016/j.bbrc.2015.10.080

Article  PubMed  CAS  Google Scholar 

Kim J, Nitta T, Mohuczy D, O’Malley KA, Moldawer LL, Dunn WA Jr et al (2008) Impaired autophagy: a mechanism of mitochondrial dysfunction in anoxic rat hepatocytes. Hepatology 47:1725–1736. https://doi.org/10.1002/hep.22187

Article  PubMed  CAS  Google Scholar 

Kong Z, Liu R, Cheng Y (2019) Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway. Biomed Pharmacother 109:2043–2053. https://doi.org/10.1016/j.biopha.2018.11.030

Article  PubMed  CAS  Google Scholar 

Chen J, Wang Z, Mao Y, Zheng Z, Chen Y, Khor S et al (2017) Liraglutide activates autophagy via GLP-1R to improve functional recovery after spinal cord injury. Oncotarget 8:85949–85968. https://doi.org/10.18632/oncotarget.20791.8:85949

Article  PubMed  PubMed Central  Google Scholar 

Yang X, Liu S, Wang C, Fan H, Zou Q, Pu Y et al (2024) Dietary salt promotes cognition impairment through GLP-1R/mTOR/p70S6K signaling pathway. Sci Rep 14:7970. https://doi.org/10.1038/s41598-024-57998-9

Article  PubMed  PubMed Central  CAS  Google Scholar 

Memmott RM, Dennis PA (2009) Akt-dependent and-independent mechanisms of mTOR regulation in cancer. Cell Signal 21:656–664. https://doi.org/10.1016/j.cellsig.2009.01.004

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141. https://doi.org/10.1038/ncb2152

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu WY, Jiang RS (2013) Advances in the research of AMPK and its subunit genes. Pak J Biol Sci 16:1459–1468. https://doi.org/10.3923/pjbs.2013.1459.1468

Article  PubMed  CAS  Google Scholar 

Egan D, Kim J, Shaw RJ, Guan KL (2011) The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 7:643–644. https://doi.org/10.4161/auto.7.6.15123

Article  PubMed  CAS  Google Scholar 

Wang Y, Zhang H, Pang T, Zuo Z, Ren K (2020) Rapamycin improves renal injury induced by Iodixanol in diabetic rats by deactivating the mTOR/p70S6K signaling pathway. Life Sci 259:118284. https://doi.org/10.1016/j.lfs.2020.118284

Article  PubMed  CAS  Google Scholar 

Heras-Sandoval D, Pérez-Rojas JM, Hernández-Damián J, Pedraza-Chaverri J (2014) The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal 26:2694–2701. https://doi.org/10.1016/j.cellsig.2014.08.019

Article  PubMed  CAS  Google Scholar 

Rosenthal PJ (2008) Artesunate for the treatment of severe falciparum malaria. N Engl J Med 358:1829–1836. https://doi.org/10.1056/NEJMct0709050

Article  PubMed  CAS  Google Scholar 

Callender DM, Hsue G (2011) Artesunate: investigational drug for the treatment of severe falciparum malaria in Hawai ‘i. Hawaii Med J 70:77–79

PubMed  PubMed Central  Google Scholar 

Wang D, Shi J, Lv S, Xu W, Li J, Ge W et al (2015) Artesunate attenuates lipopolysaccharide-stimulated proinflammatory responses by suppressing TLR4, MyD88 expression, and NF-κB activation in microglial cells. Inflammation 38:1925–1932. https://doi.org/10.1007/s10753-015-0172-7

Article  PubMed  CAS  Google Scholar 

Cao T-h, Jin S-g, Fei D-s, Kang K, Jiang L, Z-yuan L et al (2016) Artesunate protects against sepsis-induced lung injury via heme oxygenase-1 modulation. Inflammation 39:651–662. https://doi.org/10.1007/s10753-015-0290-2

Article  PubMed  CAS  Google Scholar 

Zhao D, Zhang J, Xu G, Wang Q (2017) Artesunate protects LPS-induced acute lung injury by inhibiting TLR4 expression and inducing Nrf2 activation. Inflammation 40:798–805. https://doi.org/10.1007/s10753-017-0524-6

Article  PubMed  CAS  Google Scholar 

Liu Z, Qu M, Yu L, Song P, Chang Y (2018) Artesunate inhibits renal ischemia-reperfusion-mediated remote lung inflammation through attenuating ROS-induced activation of NLRP3 inflammasome. Inflammation 41:1546–1556. https://doi.org/10.1007/s10753-018-0801-z

Article  PubMed  CAS  Google Scholar 

Khan AI, Kapoor A, Chen J, Martin L, Rogazzo M, Mercier T et al (2018) The antimalarial drug artesunate attenuates cardiac injury in a rodent model of myocardial infarction. Shock 49:675–681. https://doi.org/10.1097/SHK.0000000000000963

Article  PubMed  CAS  Google Scholar 

Lu H, Wang B, Cui N, Zhang Y (2018) Artesunate suppresses oxidative and inflammatory processes by activating Nrf2 and ROS-dependent p38 MAPK and protects against cerebral ischemia-reperfusion injury. Mol Med Rep 17:6639–6646. https://doi.org/10.3892/mmr.2018.8666

Article  PubMed  CAS  Google Scholar 

Ghoneim MES, Abdallah DM, Shebl AM, El-Abhar HS (2020) The interrupted cross-talk of inflammatory and oxidative stress trajectories signifies the effect of artesunate against hepatic ischemia/reperfusion-induced inflammasomopathy. Toxicol Appl Pharmacol 409:115309. https://doi.org/10.1016/j.taap.2020.115309

Comments (0)

No login
gif