Acet Ö, Erdönmez D, Acet B, Odabaşı M. N-acyl homoserine lactone molecules assisted quorum sensing: effects consequences and monitoring of bacteria talking in real life. Arch Microbiol. 2021;203:3739–49. https://doi.org/10.1007/s00203-021-02381-9
Article PubMed CAS Google Scholar
Galloway WR, Hodgkinson JT, Bowden SD, Welch M, Spring DR. Quorum sensing in Gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways. Chem Rev. 2011;111:28–67. https://doi.org/10.1021/cr100109t
Article PubMed CAS Google Scholar
Ampomah-Wireko M, Luo C, Cao Y, Wang H, Nininahazwe L, Wu C. Chemical probe of AHL modulators on quorum sensing in Gram-Negative Bacteria and as antiproliferative agents: A review. Eur J Med Chem. 2021;226:113864. https://doi.org/10.1016/j.ejmech.2021.113864
Article PubMed CAS Google Scholar
Maha Swetha BR, Saravanan M, Piruthivraj P. Emerging trends in the inhibition of bacterial molecular communication: An overview. Microb Pathog. 2024;186:106495. https://doi.org/10.1016/j.micpath.2023.106495
Article PubMed CAS Google Scholar
Wu S, Liu J, Liu C, Yang A, Qiao J. Quorum sensing for population-level control of bacteria and potential therapeutic applications. Cell Mol Life Sci. 2020;77:1319–43. https://doi.org/10.1007/s00018-019-03326-8
Article PubMed CAS Google Scholar
Stevens AM, Queneau Y, Soulère L, von Bodman S, Doutheau A. Mechanisms and synthetic modulators of AHL-dependent gene regulation. Chem Rev. 2011;111:4–27. https://doi.org/10.1021/cr100064s
Article PubMed CAS Google Scholar
Zhang Q, Li S, Hachicha M, Boukraa M, Soulère L, Efrit ML, et al. Heterocyclic chemistry applied to the design of N-Acyl homoserine lactone analogues as bacterial quorum sensing signals mimics. Molecules. 2021;26:5135. https://doi.org/10.3390/molecules26175135
Article PubMed PubMed Central CAS Google Scholar
Meschwitz SM, Teasdale ME, Mozzer A, Martin N, Liu J, Forschner-Dancause S, et al. Antagonism of quorum sensing phenotypes by analogs of the marine bacterial secondary metabolite 3-methyl-N-(2′-Phenylethyl)-butyramide. Marine Drugs. 2019;17:389. https://doi.org/10.3390/md17070389
Article PubMed PubMed Central CAS Google Scholar
Li S, Wawrzyniak J, Queneau Y, Soulère L. 2-substituted aniline as a simple scaffold for LuxR-regulated QS modulation. Molecules. 2017;22:2090. https://doi.org/10.3390/molecules22122090
Article PubMed PubMed Central CAS Google Scholar
Zhang Q, Jeanneau E, Queneau Y, Soulère L. (2R)- and (2S)- 2-hydroxy-hexanoyl and octanoyl-l-homoserine lactones: new highly potent quorum sensing modulators with opposite activities.Bioorg Chem. 2020;104:104307. https://doi.org/10.1016/j.bioorg.2020.104307.
Article PubMed CAS Google Scholar
Soulère L, Sabbah M, Fontaine F, Queneau Y, Doutheau A. LuxR-dependent quorum sensing: computer aided discovery of new inhibitors structurally unrelated to N-acylhomoserine lactones. Bioorg Med Chem Lett. 2010;20:4355–8. https://doi.org/10.1016/j.bmcl.2010.06.081
Article PubMed CAS Google Scholar
Sabbah M, Fontaine F, Grand L, Boukraa M, Efrit ML, Doutheau A, et al. Synthesis and biological evaluation of new N-acyl-homoserine-lactone analogues, based on triazole and tetrazole scaffolds, acting as LuxR-dependent quorum sensing modulators. Bioorg Med Chem. 2012;20:4727–36. https://doi.org/10.1016/j.bmc.2012.06.007
Article PubMed CAS Google Scholar
Boukraa M, Sabbah M, Soulère L, El Efrit ML, Queneau Y, Doutheau A. AHL-dependent quorum sensing inhibition: synthesis and biological evaluation of α-(N-alkyl-carboxamide)-γ-butyrolactones and α-(N-alkyl-sulfonamide)-γ-butyrolactones. Bioorg Med Chem Lett. 2011;21:6876–9. https://doi.org/10.1016/j.bmcl.2011.09.010
Article PubMed CAS Google Scholar
Manson DE, O’Reilly MC, Nyffeler KE, Blackwell HE. Design, synthesis, and biochemical characterization of non-native antagonists of the pseudomonas aeruginosa quorum sensing receptor LasR with nanomolar IC(50) values. ACS Infect Dis. 2020;6:649–61. https://doi.org/10.1021/acsinfecdis.9b00518
Article PubMed PubMed Central CAS Google Scholar
Scheidt F, Thiehoff C, Yilmaz G, Meyer S, Daniliuc CG, Kehr G, et al. Fluorocyclisation via I(I)/I(III) catalysis: a concise route to fluorinated oxazolines. Beilstein J Org Chem. 2018;14:1021–7. https://doi.org/10.3762/bjoc.14.88
Article PubMed PubMed Central CAS Google Scholar
Fürstner A, Gastner T, Weintritt H. A second generation synthesis of roseophilin and chromophore analogues. J Organic Chem. 1999;64:2361–6. https://doi.org/10.1021/jo982088t
Winson MK, Swift S, Fish L, Throup JP, Jørgensen F, Chhabra SR, et al. Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiology Letters. 1998;163:185–92. https://doi.org/10.1111/j.1574-6968.1998.tb13044.x
Article PubMed CAS Google Scholar
Frezza M, Castang S, Estephane J, Soulère L, Deshayes C, Chantegrel B, et al. Synthesis and biological evaluation of homoserine lactone derived ureas as antagonists of bacterial quorum sensing. Bioorg Med Chem. 2006;14:4781–91. https://doi.org/10.1016/j.bmc.2006.03.017
Article PubMed CAS Google Scholar
Reverchon S, Chantegrel B, Deshayes C, Doutheau A, Cotte-Pattat N. New synthetic analogues of N-acyl homoserine lactones as agonists or antagonists of transcriptional regulators involved in bacterial quorum sensing. Bioorg Med Chem Lett. 2002;12:1153–7. https://doi.org/10.1016/s0960-894x(02)00124-5
Article PubMed CAS Google Scholar
Soulère L, Frezza M, Queneau Y, Doutheau A. Exploring the active site of acyl homoserine lactones-dependent transcriptional regulators with bacterial quorum sensing modulators using molecular mechanics and docking studies. J Mol Graph Model. 2007;26:581–90. https://doi.org/10.1016/j.jmgm.2007.04.004
Article PubMed CAS Google Scholar
Estephane J, Dauvergne J, Soulère L, Reverchon S, Queneau Y, Doutheau A. N-Acyl-3-amino-5H-furanone derivatives as new inhibitors of LuxR-dependent quorum sensing: Synthesis, biological evaluation and binding mode study. Bioorg Med Chem Lett. 2008;18:4321–4. https://doi.org/10.1016/j.bmcl.2008.06.090
Article PubMed CAS Google Scholar
Xue LC, Rodrigues JP, Kastritis PL, Bonvin AM, Vangone A. PRODIGY: a web server for predicting the binding affinity of protein-protein complexes. Bioinformatics. 2016;32:3676–8. https://doi.org/10.1093/bioinformatics/btw514
Article PubMed CAS Google Scholar
Vangone A, Schaarschmidt J, Koukos P, Geng C, Citro N, Trellet ME, et al. Large-scale prediction of binding affinity in protein–small ligand complexes: the PRODIGY-LIG web server. Bioinformatics. 2018;35:1585–7. https://doi.org/10.1093/bioinformatics/bty816
Vangone A, Bonvin AM. Contacts-based prediction of binding affinity in protein-protein complexes. Elife. 2015;4:e07454. https://doi.org/10.7554/eLife.07454
Article PubMed PubMed Central Google Scholar
Soulère L. Computer-assisted conformational analysis of small molecules using VEGA ZZ, a freely available software program, as an introduction to molecular modeling. J Chem Educ. 2021;98:2709–13. https://doi.org/10.1021/acs.jchemed.1c00017
Rashed MN, Masuda K, Ichitsuka T, Koumura N, Sato K, Kobayashi S. Zirconium oxide-catalyzed direct amidation of unactivated esters under continuous-flow conditions. Adv Synth Catal. 2021;363:2529–35. https://doi.org/10.1002/adsc.202001496
Rousta M, Khalili D, Khalafi-Nezhad A, Ebrahimi E. CuO-decorated magnetite-reduced graphene oxide: a robust and promising heterogeneous catalyst for the oxidative amidation of methylarenes in water via benzylic sp3 C–H activation. New J Chem. 2021;45:20007–20. https://doi.org/10.1039/D1NJ03982B
Comments (0)