Thiophene ring-opening reactions. Part VII: synthesis and antitumor, anti-inflammatory, and antioxidant properties of 1,3,4‒thiadiazoline‒6-sulfanylthiopyran-4(1H)-one hybrids

Çevik UA, Celik I, Ince U, Maryam Z, Ahmad I, Patel H, et al. Synthesis, biological evaluation, and molecular modeling studies of new 1, 3, 4-thiadiazole derivatives as potent antimicrobial agents. 2023;20:e202201146.

Cristina A, Leonte D, Vlase L, Bencze LC, Imre S, Marc G, et al. Heterocycles 48. synthesis, characterization and biological evaluation of imidazo[2,1-b][1,3,4]thiadiazole derivatives as anti-inflammatory agents. Molecules. 2018;23:2425.

Article  PubMed  PubMed Central  Google Scholar 

Avvaru SP, Noolvi MN, More UA, Chakraborty S, Dash A, Aminabhavi TM, et al. Synthesis and anticancer activity of thiadiazole containing thiourea, benzothiazole and imidazo[2,1-b][1,3,4]thiadiazole scaffolds. Med Chem. 2021;17:750–65. https://doi.org/10.2174/1573406416666200519085626

Article  CAS  PubMed  Google Scholar 

Anthwal T, Paliwal S, Nain S. Diverse biological activities of 1,3,4-thiadiazole scaffold. Chemistry. 2022;4:1654–71.

Article  CAS  Google Scholar 

Hu Y, Li CY, Wang XM, Yang YH, Zhu HL. 1,3,4-Thiadiazole: synthesis, reactions, and applications in medicinal, agricultural, and materials chemistry. Chem Rev. 2014;114:5572–610. https://doi.org/10.1021/cr400131u

Article  CAS  PubMed  Google Scholar 

Sataar J, Ibrahim MS, Asmaa S. Various of chemical and pharmacological applications of 1,3,4-thiadiazole and It’s derivative. 2023:240–8. https://doi.org/10.36346/sarjps.2023.v05i06.006.

Manoharan I. A review of recent developments in the biological activity OF 1,3,4 thiadiazoles. 2024;17:809–19. https://doi.org/10.31788/RJC.2024.1738857.

Abadleh MM, Abdullah HA, Zahra AJ, Sabri SS, Awwadi FF, El-Abadelah MM. Thiophene ring-opening reactions IV. Facile generation of novel ethyl 4-hydroxy-6-thioxonicotinate-1,3,4-thiadiazoline hybrids. Lett Org Chem. 2022;19:504–10. https://doi.org/10.2174/1570178618666211110141423

Article  CAS  Google Scholar 

Abdullah AH, El-Abadelah MM, Zahra JA, Sabri SS, Awwadi FF. Thiophene ring-opening reactions II. Easy synthesis of 1, 3, 4-thiadiazoline-sulfanylpyridazine hybrids. Monatshefte Für Chem Chem Mon. 2021;152:853–62.

Article  CAS  Google Scholar 

Jarrar KA, El-Abadelah MM, Sabri SS, Zahra AJ, Hamdan SM. Thiophene ring-opening reactions V. Expedient synthesis of 1,3,4- thiadiazoline-sulfanyl[1,3]thiazin-4-one hybrids. Lett Org Chem. 2022;19:976–82. https://doi.org/10.2174/1570178619666220314151114

Article  CAS  Google Scholar 

Wilk W, Waldmann H, Kaiser M. γ-Pyrone natural products—a privileged compound class provided by nature. Bioorg Med Chem. 2009;17:2304–9. https://doi.org/10.1016/j.bmc.2008.11.001

Article  CAS  PubMed  Google Scholar 

Singh SK. Pyrone-derived marine natural products: a review on isolation, bio-activities and synthesis. Curr Org Chem. 2020;24:354–401. https://doi.org/10.2174/1385272824666200217101400

Article  CAS  Google Scholar 

Hosokawa S, Yokota K, Imamura K, Suzuki Y, Kawarasaki M, Tatsuta K. The first total synthesis and structural determination of actinopyrone A. Tetrahedron Lett. 2006;47:5415–8. https://doi.org/10.1016/j.tetlet.2006.05.028

Article  CAS  Google Scholar 

Shimamura H, Sunazuka T, Izuhara T, Hirose T, Shiomi K, Omura S. Total synthesis and biological evaluation of verticipyrone and analogues. Org Lett. 2007;9:65–7. https://doi.org/10.1021/ol0626140

Article  CAS  PubMed  Google Scholar 

Hamama WS, Sofan MA, El-Hawary II, Zoorob HH. Narrative in the chemistry of (aryl/hetaryl)thiopyran-4-one. Synth Commun. 2021;51:514–40. https://doi.org/10.1080/00397911.2020.1846200

Article  CAS  Google Scholar 

Baeva LA, Biktasheva LF. Synthesis of tetrahydro-4H-thiopyran-4-ones (microreview). Chem Heterocycl Compd. 2019;55:25–7. https://doi.org/10.1007/s10593-019-02413-9

Article  CAS  Google Scholar 

Barhoumi LM, El-Abadelah MM, Sabri SS, Voelter W. Fused thia-heterocycles via isothiocyanates. Part I. Facile synthesis of some new 1-benzothiopyran- 4-one derivatives. Z Für Naturforsch B. 2017;72:369–75. https://doi.org/10.1515/znb-2016-0271

Article  CAS  Google Scholar 

Mueller JL, Gibson MS, Hartman JS. Carbon-13 chemical shifts of alkene carbons in 2-acylidene-3,5-diaryl-2,3-dihydro-1,3,4-thiadiazoles and related benzothiazoles and -selenazoles, and their relationship to other push-pull alkenes. Can J Chem. 1996;74:1329–34. https://doi.org/10.1139/v96-148

Article  CAS  Google Scholar 

Mohammad T, Gibson MS. Dimeric and monomeric methine bases in the 1,3,4-thiadiazole series. Phosphorus Sulfur Silicon Relat Elem. 1992;70:243–53. https://doi.org/10.1080/10426509208049173

Article  CAS  Google Scholar 

Pandya N, Basile AJ, Gupta AK, Hand P, MacLaurin CL, Mohammad T, et al. 2-Acylidene-3,5-diaryl-2,3-dihydro-1,3,4-thiadiazoles and related compounds: a question of hypervalent S … O interactions. Can J Chem. 1993;71:561–71. https://doi.org/10.1139/v93-078

Article  CAS  Google Scholar 

AlDamen MA, Sinnokrot M. Crystallographic and theoretical studies of 1-(1-naphthyl)-2-thiourea with intermolecular N-H…S heteroatom interaction and N-H…π interaction. J Struct Chem. 2014;55:53–60. https://doi.org/10.1134/S0022476614010089

Article  CAS  Google Scholar 

Vogel L, Wonner P, Huber SM. Chalcogen bonding: an overview. Angew Chem Int Ed. 2019;58:1880–91.

Article  CAS  Google Scholar 

Abadleh MM, Abdullah AH, Awwadi FF, El-Abadelah MM. Thiophene ring-opening reactions. Direct access to the synthesis of 1, 3, 4-thiadiazoline-(condenced) pyridone hybrids. Tetrahedron. 2021;83:131957.

Article  CAS  Google Scholar 

Srivastava K, Chakraborty T, Singh HB, Butcher RJ. Intramolecularly coordinated azobenzene selenium derivatives: effect of strength of the Se⋯N intramolecular interaction on luminescence. Dalton Trans. 2011;40:4489–96. https://doi.org/10.1039/C0DT01319F

Article  CAS  PubMed  Google Scholar 

Srivastava K, Shah P, Singh HB, Butcher RJ. Isolation and structural characterization of some aryltellurium halides and their hydrolyzed products stabilized by an intramolecular Te···N interaction. Organometallics. 2011;30:534–46. https://doi.org/10.1021/om1009022

Article  CAS  Google Scholar 

Wirth T. Organoselenium chemistry in stereoselective reactions. Angew Chem Int Ed. 2000;39:3740–9. https://doi.org/10.1002/1521-3773(20001103)39:21<3740::AID-ANIE3740>3.0.CO;2-N

Article  CAS  Google Scholar 

El-Abadelah MM, Kamal MR, Tokan WM, Jarrar. SaO. synthesis and properties of 1-aryl-6-chloro-1,4-dihydro-4-oxothieno [2,3-c]pyridazine-3-carboxylic acids. J Für Prakt Chemie-Chemiker-Ztg. 1997;339:284–7. https://doi.org/10.1002/prac.19973390150

Article  CAS  Google Scholar 

Jensen KA, Miquel JF, Motzfeldt K, Finsnes E, Sörensen JS, Sörensen NA. Complexes de nickel avec la thiobenzhydrazide et avec des composés analogues. Acta Chem Scand. 1952;6:189–94.

Article  CAS  Google Scholar 

Scherowsky G. Die synthese von 2.4-diaryl-1.3.4-thiadiazoliumsalzen. Tetrahedron Lett. 1971;12:4985–8. https://doi.org/10.1016/S0040-4039(01)97606-3

Article  Google Scholar 

Abadleh M, Arafat T, Abu-Qatouseh L, El-Abdallah M, Awwadi F, Voelter W. Facile synthesis of model 2,4-diaryl-1,3,4-thiadiazino[5,6-h]fluoroquinolones. Zeitschrift für Naturforschung B. 2019;74:507–12. https://doi.org/10.1515/znb-2019-0023.

Comments (0)

No login
gif